

BREAKING WAVES IN SHORELINE WATER

SIMULATIONS FOR GAMES

Calum Leask

Abertay University

School of Arts, Media and Computer Games

May 2016

i

Abstract

3D water simulations in video games are becoming more and more realistic. One of

the biggest challenges with simulating realistic water is the amount of processing

power that is required, something games simply cannot afford to expend. Breaking

waves are all too often neglected in water simulations as they are computationally

expensive and usually have no impact on the gameplay. However, there is

potential for shoreline water simulations to attain higher levels of realism by

incorporating breaking waves. This project investigates and builds upon current

techniques used for simulating breaking waves in order to determine how realistic

a real-time simulation of shoreline water could be.

An application was developed, demonstrating a real-time simulation of shoreline

water which incorporates breaking waves. The simulation uses the one

dimensional shallow-water equations in order to simulate the flow of water

towards the shoreline. Waves were located and tracked within the simulation so

that meshes could be constructed to create the impression of overturning waves.

Particles were generated from the meshes along the length of the wave to visually

reflect the breaking waves. The simulation was evaluated with regards to

performance and its visual appearance. Overall the simulation was found to be

realistic, concluding that shoreline water simulations which incorporate breaking

waves have the potential to feature in video games.

ii

Acknowledgements

I would like to take the opportunity to thank Dr Karen Meyer for her guidance

and supervision during the course of the project. I would also like to thank all of

the lecturers at Abertay University who have taught and inspired me throughout

my undergraduate education. Finally I would like to thank all of my friends and

family for their continual support and encouragement over the years.

iii

TABLE OF CONTENTS

INTRODUCTION ... 1

Research Question .. 5

Aims ... 5

Objectives .. 5

Chapter 1. Context .. 6

1.1 Background ... 6

1.2 The One Dimensional Shallow-Water Equations .. 7

1.3 Eulerian and Lagrangian Viewpoints .. 8

1.4 Semi-Lagrangian Schemes ... 8

1.5 Related Work ... 9

1.6 Photorealistic Water .. 10

Chapter 2. Methodology ... 12

2.1 Representing the Water’s Surface ... 12

2.2 Numerically Solving the 1D Shallow-Water Equations 13

2.3 The Sea Bed... 16

2.4 Boundary Conditions ... 16

iv

2.4.1 Open Ocean Boundary ... 17

2.4.2 Moving Shoreline Boundary .. 17

2.5 Interactions with the Shoreline... 18

2.6 Propagating Waves ... 19

2.7 Locating and Tracking Waves with Potential to Break 20

2.8 Creating and Animating Breaking Waves .. 21

2.9 Merging Breaking Waves into the Surface of the Water 22

2.10 Making the Simulation Photorealistic ... 23

2.10.1 Colour and Surface Reflections .. 24

2.10.2 Animated Ripples .. 25

2.10.3 Shoreline Foam ... 26

2.10.4 Splash Particle Effects ... 30

2.10.5 Wetting the Sand .. 32

Chapter 3. Results and Discussion ... 33

3.1 Performance Analysis .. 33

3.1.1 Frame Rate .. 35

3.1.2 Effect of the Height Field’s Size on Simulation Time 35

3.1.3 Stability of the Simulation .. 38

3.2 Visual Analysis ... 38

3.2.1 Believability of the Simulation ... 38

3.2.2 Photorealism of the Simulation ... 39

Chapter 4. Conclusions and Future Work ... 42

4.1 Future Work ... 43

v

APPENDIX A: Euler’s Equations ... 45

APPENDIX B: Solving the 2D Dampened Wave Equation 46

REFERENCES ... 49

BIBLIOGRAPHY .. 54

vi

LIST OF TABLES

Table 1: Specifications of the laptop used for testing .. 33

Table 2: Results from profiling components of the simulation 34

Table 3: Frame rate tested in windowed and full screen modes 35

vii

LIST OF FIGURES

Figure 1: Water from ‘The Elder Scrolls III: Morrowind’ .. 2

Figure 2: Ocean from ‘Assassin's Creed IV: Black Flag’ .. 2

Figure 3: Shoreline water in ‘The Legend of Zelda: The Wind Waker’ 3

Figure 4: Shoreline water in ‘GTA: San Andreas’ (PS2) vs ‘GTA V’ (PS4) 4

Figure 5: Layton and Van de Panne's (2002) animated water waves 9

Figure 6: Direction of the flow of water on the 2D height field 12

Figure 7: A gradually increasing sea bed ... 16

Figure 8: Side view of the simulation with the two boundaries 17

Figure 9: Shoreline boundary at 𝒙𝒔 ... 18

Figure 10: Wave propagation from the open boundary ... 20

Figure 11: A wave with the potential to break ... 20

Figure 12: Particles spawn from the peak of waves .. 21

Figure 13: Mesh formed by connecting projected particles 21

Figure 14: The furthest particle in the mesh hitting the surface of the water 23

Figure 15: Height field raised to join the particles in the mesh 23

Figure 16: Normal map which adds detail to the water's surface 24

file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935720
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935721
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935722
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935723
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935724
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935725
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935726
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935727
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935728
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935729

viii

Figure 17: Flat water surface .. 25

Figure 18: Normal mapped water surface .. 25

Figure 19: Ripples animated throughout the water's surface 25

Figure 20: Code which applies foam along the shoreline ... 27

Figure 21: Foam produced by an advancing shoreline ... 28

Figure 22: Foam brought back by a receding shoreline .. 28

Figure 23: Foam texture used to add detail to the foam ... 28

Figure 24: Plain white foam ... 29

Figure 25: Improved foam with added detail .. 29

Figure 26: Foam applied to the mesh of a breaking wave .. 30

Figure 27: Particles spawned where a wave crashed .. 31

Figure 28: Particles spawned along a wave mesh.. 31

Figure 29: Sand is made wet by the moving shoreline ... 32

Figure 30: Effect of shoreline length on simulation time ... 36

Figure 31: Effect of ocean length on simulation time ... 37

Figure 32: Comparison of results from Figures 30 and 31 .. 37

Figure 33: Progression of a breaking wave .. 39

Figure 34: (L) Photo of shoreline foam (R) Screenshot of simulated foam.............. 40

Figure 35: (L) Photo of shoreline water (R) Screenshot of simulated water 40

Figure 36: The surface of the water reflecting the sun and the sky 41

Figure 37: The colour of the water changing as the sky changes 41

file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935731
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935732
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935733
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935734
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935735
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935736
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935737
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935739
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935740
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935741
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935742
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935747
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935748
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935749
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935750
file:///C:/Users/User/Documents/Uni%20Work/4th%20Year/Honours%20Project/Dissertation/Honours_Dissertation_1200805.docx%23_Toc449935751

1

INTRODUCTION

Water covers 71% of our planet (NOAA 2016) and is present in our everyday lives

therefore it should come as no surprise that water features in so many video games.

However, simulating realistic water at real-time is a challenge for developers, even

with today’s processing power. Accurate water simulations are computationally

expensive and water simulations in video games need to be fast and also look

convincing.

Water is complex, it behaves and responds very differently to rigid bodies. It is

made up of particles which are free to move independently of each other,

describing nonlinear motion. Although the volume of water in a simulation may

remain constant its topology can be constantly changing based on a whole host of

external factors. Coupling real-time rigid body physics interactions with fluid

simulations can also prove to be a real challenge in video games.

Accurate water simulations have existed in engineering for years using models

such as the Navier-Stokes equations which are the basic equations that govern

fluid dynamics (CFD Online 2012). However these equations, which strive for

accuracy, are far too complex to solve for large 3D water simulations in video

games at real-time. The equations need to be simplified or other techniques for

simulating water need to be used. Grid based simulations are often used for large

body water simulations like rivers, oceans and lakes whereas smaller features like

2

fountains, dripping taps and broken fire hydrants might use particle based

simulations, animations or other more suited techniques.

Georges Torres, Senior Technical Director for Assassin’s Creed III (2012), said “In

feature films just a decade ago, rendering oceans was reason enough to seek an

Oscar.” (Seymour 2012). Comparing the jagged water’s edge from Morrowind

(2002) to the stunning oceans of Assassin’s Creed Black Flag (2013) there is no

doubt in the past decade water simulations have come a long way in video games

(see Figures 1 and 2).

Figure 1: Water from ‘The Elder Scrolls III: Morrowind’

Figure 2: Ocean from ‘Assassin's Creed IV: Black Flag’

3

Efficiency is key in the simulation of water in video games. All the processing

power available cannot be given solely to the water simulation as other areas of the

game usually require a lot of processing power. This means the simulation should

“be at least around 3–20 times faster” (Kellomäki 2012, p.11) than real-time,

depending on the complexity of the game.

The believability and the photorealism of water in video games is also an

important aspect of water simulations since games are becoming more and more

photorealistic and water needs to keep up with the rest of the graphics to avoid

looking out of place. One area where water lacks realism in video games is the

absence of breaking waves as waves approach the shoreline. “Real breaking waves

at the shore that curl over themselves is a very tough problem and generally isn't

implemented.” (Kayne 2014). Games can and do get away with ignoring breaking

waves since it is down to environmental conditions that govern the size of waves

and whether they will break and come crashing towards shore. No one is going to

complain if a game doesn’t include breaking waves, but it would look nice and it

would definitely take shoreline water simulations to the next level in video games.

Figure 3: Shoreline water in ‘The Legend of Zelda: The Wind Waker’

4

The Legend of Zelda: The Wind Waker (2002) is an early example of a game which

included a subtle interaction between the sea and the shore with advancing and

receding foam (see Figure 3). Super Mario Sunshine (2002) also included shoreline

interaction along with numerous other visual effects and was hailed for having

beautiful water for its time.

As hardware has evolved over the last decade shoreline water simulations have

also improved as shown by the dramatic difference between the beach water in

Grand Theft Auto (GTA): San Andreas (2004) for PlayStation 2 and the water in

GTA V (2014) for PlayStation 4 (see Figure 4).

Figure 4: Shoreline water in ‘GTA: San Andreas’ (PS2) vs ‘GTA V’ (PS4)

Adding breaking waves to real-time water simulations has the potential to greatly

improve the realism of water within video games and increase the wow factor

associated with beautiful water simulations, but this is so often neglected due to

the complexity breaking waves add to the water simulations (Rath 2014). This

project will seek to investigate the area of breaking waves along with shoreline

water simulations in video games by attempting to answer the following question:

5

Research Question

“How realistic can a simulation of shoreline water be in a real-time application

which also incorporates breaking waves?”

Aims

The aims of the project are to:

 Determine the best approach to incorporating breaking waves into an

efficient and realistic simulation of shoreline water.

 Produce a realistic simulation of shallow water that interacts with a

shoreline in a real-time application.

Objectives

 Research how shallow tidal water interacts with shorelines and under what

conditions waves break.

 Investigate existing and possible techniques for simulating shallow water

and breaking waves and how they can be combined.

 Create an application which simulates shallow water that interacts with a

shoreline and includes the capacity for breaking waves using the researched

techniques.

 Determine how realistic the simulation is whilst running at real-time and

investigate areas where the simulation could be improved.

6

Chapter 1. Context

1.1 Background

As hardware has advanced over the last two decades so have the 3D water

simulations that are found in video games. The early nineties saw the rise in 3D

video game development which paved the way for the development of 3D water

implementations. 3D water started out as statically textured or coloured flat planes,

as witnessed in Doom (1993). Implementations slowly progressed as motion was

simulated by using moving texture coordinates as seen in games such as Shadow

Warrior (1997) and GoldenEye 007 (1997). Visually, water became more appealing

when transparency was incorporated through alpha blending, which allowed

players to see below the surface of the water and through other features like

waterfalls. Surface details such as splashes and ripples began to emerge in games

like Super Mario 64 (1996), conveying player’s interactions with the water. A huge

step was taken towards simulating waves when the game Wave Race 64 (1996)

replaced traditional planar water with a height field, which was able to replicate

waves passing through water.

Even with all the advancements made in the past two decades realistic water

simulation is still a substantial challenge in the development of video games

(Kotzer 2015). Extensive research has been done over the years and is still ongoing,

looking into different methods and techniques for simulating and rendering a

variety of different types of water within in a gaming context. There are now

many different methods available for simulating water in video games which

Kellomäki (2012) provides a comparison of. The nature and requirements of the

water to be simulated determines the appropriate techniques to be used.

7

1.2 The One Dimensional Shallow-Water Equations

To model and simulate shoreline water we can consider the water to be an ideal

fluid which has no viscosity and the density of the fluid remains constant. This

allows us to work with the Euler equations (see Appendix A) which are a

simplification of the Navier-Stokes equations. A further simplification can be

applied if we ignore the vertical component of acceleration which gives us the

shallow-water equations (Randall 2006):

𝛿𝒖

𝛿𝑡
+ 𝒖

𝛿𝒖

𝛿𝑥
= −𝑔

𝛿𝒉

𝛿𝑥
 (1)

𝛿𝒉

𝛿𝑡
+ 𝒖

𝛿𝒉

𝛿𝑥
+ 𝒉

𝛿𝒖

𝛿𝑥
= 0 (2)

Where 𝒖 and 𝒉 are functions of 𝑥 and 𝑡 alone. The first equation is derived from

Newton’s 2nd Law 𝐹 = 𝑚𝑎 . The second equation, known as the continuity

equation, is derived from the incompressibility condition and states that a particle

on the surface of the fluid does not separate from the rest of the fluid.

These simplifications greatly reduce the complexity and therefore the

computational expense of the simulation. This makes the shallow-water equations

more suitable for simulating water in real-time applications such as games. Since

the simulation is only concerned with waves travelling in a single direction

towards the shore, the one dimensional shall-water equations are sufficient to

model the basics of shoreline water. They are also far less computationally

expensive to compute than the more complex two dimensional shallow-water

equations.

However, there are limitations of using the shallow-water equations to model

shoreline water. Since the equations do not account for three-dimensional flows

and because of the continuity equation, breaking waves cannot be modelled by the

8

shallow-water equations alone. Although the shallow-water equations do account

for interactions between the water and boundaries and dry zones such as a

shoreline as the water level approaches zero.

1.3 Eulerian and Lagrangian Viewpoints

Two common approaches exist to discretize the shallow-water equations and track

the motion of the shallow water. They are the Eulerian (grid based) and the

Lagrangian (particle based) approaches (Bridson and Müller-Fischer 2007, p. 4).

The Eulerian viewpoint uses a grid to track the flow of the water, calculating and

storing the height and velocity of the water at fixed cells in the grid as the water

flows through the grid. Eulerian schemes are easy to work with and retain the

uniform regularity of the grid. However for an Eulerian scheme to maintain

stability small time steps are required which impacts performance time.

The Lagrangian viewpoint treats the water as a system of particles, calculating each

particle’s position, height and velocity as they move and interact with surrounding

particles. Lagrangian schemes allow for larger time steps as they are less restricted

with stability requirements. However, the biggest drawback of Lagrangian

schemes is they can become computationally expensive to calculate for a larger

number of particle-particle interactions as the number of particles in a system

increases. Also, particles which started regularly spaced usually become irregularly

spaced as they move over time which can lead to a loss in global accuracy.

1.4 Semi-Lagrangian Schemes

Semi-Lagrangian schemes have been developed to combine the advantages of both

Eulerian and Lagrangian schemes and were first introduced by Robert (1981).

Semi-Lagrangian schemes use an Eulerian framework of a regular grid whilst

9

taking the discrete equations from the Lagrangian viewpoint. At every time step

the origin of particles at fixed cells in the grid are calculated by integrating back

along particle trajectories. The height and velocity of the particles at their origin

can then be estimated by interpolating the values from the surrounding grid

points. Both Bates et al. (1993) and Wong et al. (2013) demonstrate how semi-

Lagrangian schemes can be utilised to model the shallow-water equations. Layton

and Van de Panne (2002) implemented a graphical representation (see Figure 5) to

demonstrate their ‘numerically efficient and stable algorithm for animating water

waves’ which takes a semi-Lagrangian approach.

Figure 5: Layton and Van de Panne's (2002) animated water waves

1.5 Related Work

Implementing water that includes waves with the capability of breaking and

crashing poses a difficult challenge for video game developers for a few reasons.

Eulerian Grid based simulations that use height-fields with a mesh to represent

water suffer from the problem that a mesh which is manipulated by a height-field

10

cannot fold over itself to allow a wave to break. On the other hand Lagrangian

particle based simulations are too resource intensive and expensive to compute for

large bodies of water in video games.

Research has already been carried out looking at real-time breaking waves in

water simulations. Gross et al. (2007) incorporate breaking waves into their water

simulation, which uses the shallow-water equations, by generating wave patches

which are a mesh of connected particles projected from the peak of the waves.

Bruan, Raupp Musse and Strube de Lima (2010) take a different approach,

generating breaking waves by manipulating and animating the vertices of waves as

they travel through a 2D mesh. Both examples use the more computationally

efficient Eulerian grid based approaches as a starting point for modelling the water,

then build upon the simulation to include breaking waves. Particles are also used

in both examples to emulate the visual effects of foam and splashing from the

waves as they begin to break and crash.

1.6 Photorealistic Water

Photorealistic water is not as easy to render as simply applying a texture to an

object. Water reflects, it refracts, it ripples, it sprays, it splashes and it foams. Most

of these details are important, depending on the nature of the water, and should be

considered to effectively render realistic water simulations which are convincing

and visually appealing (Kayne 2014). A more in depth discussion and analysis of

the different water simulation techniques and methods for rendering are given in

the paper ‘A Survey of Ocean Simulation and Rendering Techniques in Computer

Graphics’ (Crespin et al. 2011).

In the context of the project, where shoreline water that incorporates breaking

waves is the focus, the following visual aspects will need to be implemented to

maximise the photorealism of the simulation:

11

 Lighting

 Reflection

 Ripples

 Splashes

 Foam

Refraction and water caustics are not going to be considered since the focus is on

the water’s surface which will be turbulent, preventing viewers from viewing

below the surface of the water in any detail.

12

Chapter 2. Methodology

Having gained an understanding of the complexity behind realistic simulations of

shallow water this chapter will now discuss the methods taken to produce a

realistic simulation within a real-time an application. The application has been

developed with Visual Studio 2013 in C++ and using DirectX11. The application

allows the user to adjust the heights of waves traveling towards a shore and watch

them break at the shoreline.

2.1 Representing the Water’s Surface

The surface of the water is represented by a 2D height field of a size 250x200 in

the form of a 2D array of vertices. Each vertex contains three-component position

and normal data. The normal data is used to correctly light the water and to

calculate reflections on the water’s surface. The heights of the vertices in the

height field will be manipulated by the one-dimensional shallow-water equations,

with water flowing in the direction perpendicular to the shoreline (see Figure 6).

SHORE WATER

Figure 6: Direction of the flow of water on the 2D height field

13

2.2 Numerically Solving the 1D Shallow-Water Equations

The approach taken to spatially discretise the shallow-water equations was an

implicit semi-Lagrangian time integration method, since it is shown to be highly

efficient for real-time applications as it remains stable for large time steps whilst

also remaining capable of producing realistic waves. Adding a ground height to the

shallow-water equations gives us equations (1) and (2) where 𝑏 is the height of the

ground and 𝒉 is still the height of the height field. It is important to take into

account the height of the ground as the simulation deals with a sloping shoreline.

𝛿𝒖

𝛿𝑡
+ 𝒖

𝛿𝒖

𝛿𝑥
= −𝑔

𝛿𝒉

𝛿𝑥
 (1)

𝛿𝒉

𝛿𝑡
+ 𝒖

𝛿(𝒉 − 𝑏)

𝛿𝑥
+ (𝒉 − 𝑏)

𝛿𝒖

𝛿𝑥
= 0 (2)

Rewritten in Lagrangian form and using 𝒅 as the depth of the water, 𝒅 = 𝒉 − 𝑏,

the shallow-water equations become:

𝑑𝒖

𝑑𝑡
+ 𝑔

𝛿𝒉

𝛿𝑥
 = 0 (3)

𝑑𝒉

𝑑𝑡
− 𝒖

𝛿𝑏

𝛿𝑥
+ 𝒅

𝛿𝒖

𝛿𝑥
= 0 (4)

In a semi-Lagrangian scheme we calculate the derivatives from the trajectories of

particles at positions 𝑥𝑖 at a time of 𝑡𝑛+1 and its position at a time of 𝑡𝑛 which is

the departure point of the particle, denoted as �̃�𝑖
𝑛.

�̃�𝑖
𝑛 = 𝑥𝑖 − ∆𝑡𝒖𝑛(𝑥𝑖) (5)

14

With this we can approximate the Lagrangian derivatives with equations (6) and

(7) where �̃� and �̃� are the velocity and height of the particle at departure point �̃�𝑖
𝑛.

𝑑𝒖

𝑑𝑡
=

𝒖𝑛+1 − �̃�𝑛

∆𝑡
 (6)

𝑑𝒉

𝑑𝑡
=

𝒉𝑛+1 − �̃�𝑛

∆𝑡
 (7)

We use quadratic interpolation to calculate �̃� and �̃� at departure point �̃�𝑖
𝑛 by

considering neighbouring heights and velocities, since �̃�𝑖
𝑛 may not lie exactly on a

grid point. By substituting equations (6) and (7) into equations (3) and (4) we

obtain equations (8) and (9).

𝒖𝑛+1 − �̃�𝑛

∆𝑡
+ 𝑔

𝛿𝒉𝑛+1

𝛿𝑥
 = 0 (8)

𝒉𝑛+1 − �̃�𝑛

∆𝑡
− 𝒖𝑛+1

𝛿𝑏

𝛿𝑥
+ 𝒅𝑛

𝛿𝒖𝑛+1

𝛿𝑥
= 0 (9)

We can solve equation (9) by eliminating the terms 𝒖𝑛+1 and
𝛿𝒖𝑛+1

𝛿𝑥
. Rearranging

(8) we can get 𝒖𝑛+1 as shown in equation (10). By taking the derivative of equation

(10) with respect to 𝑥 we can get
𝛿𝒖𝑛+1

𝛿𝑥
 as shown in equation (11).

𝒖𝑛+1 = �̃�𝑛 − ∆𝑡𝑔
𝛿𝒉𝑛+1

𝛿𝑥
 (10)

𝛿𝒖𝑛+1

𝛿𝑥
=

𝛿�̃�𝑛

𝛿𝑥
− ∆𝑡𝑔

𝛿2𝒉𝑛+1

𝛿𝑥2
 (11)

15

By substituting equations (10) and (11) into equation (9) we arrive at the following

differential equation without any unknown velocity terms.

𝒉𝑛+1 + ∆𝑡2𝑔
𝛿𝑏

𝛿𝑥

𝛿𝒉𝑛+1

𝛿𝑥
 − ∆𝑡2𝑔𝒅𝑛

𝛿2𝒉𝑛+1

𝛿𝑥2
= �̃�𝑛 + ∆𝑡�̃�𝑛

𝛿𝑏

𝛿𝑥
− ∆𝑡 𝒅𝑛

𝛿�̃�𝑛

𝛿𝑥
 (12)

Using the central difference formula we can spatially discretised equation (12) so

that the one-dimensional shallow-water equations are reduced to the following

differential equation which we can then solve:

𝒉𝑖
𝑛+1 + ∆𝑡2𝑔 (

𝑏𝑖+1 − 𝑏𝑖−1

2∆𝑥
) (

𝒉𝑖+1
𝑛+1 − 𝒉𝑖−1

𝑛+1

2∆𝑥
) − ∆𝑡2𝑔𝑑𝑖

𝑛 (
𝒉𝑖−1

𝑛+1 − 2𝒉𝑖
𝑛+1 − 𝒉𝑖+1

𝑛+1

∆𝑥2
)

= �̃�𝑖
𝑛 + ∆𝑡�̃�𝑖

𝑛 (
𝑏𝑖+1 − 𝑏𝑖−1

2∆𝑥
) − ∆𝑡𝒅𝑖

𝑛 (
�̃�𝑖+1 − �̃�𝑖−1

2∆𝑥
) (13)

Where 𝒉𝑛+1 are the unknown heights of the water along the one-dimensional line

of water which we are trying to calculate at a time of 𝑡𝑛+1. 𝑔 denotes the constant

gravitational force acting upon the simulation and 𝑏 denotes the height of the

ground, which remains constant throughout the simulation for every point 𝑖. 𝒅𝑛 is

the depth of the water at a time of 𝑡𝑛, which is a simplification for 𝒅𝑛 = 𝒉𝑛 − 𝑏.

Equation (13) can then be solved using the conjugate gradient method (Hestenes

and Stiefel 1952) as it is effective for solving large and sparse systems efficiently.

For every time step, the heights 𝒉𝑛+1 at time 𝑡𝑛+1 are calculated. Using these

heights the velocities 𝒖𝑛+1 at time 𝑡𝑛+1 can then be calculated from equation (10).

To keep equation (13) stable the following time step ∆𝑡 = 1/60𝑠 and step size

∆𝑥 = 0.1𝑚 were used.

16

2.3 The Sea Bed

As mentioned earlier, the simulation incorporates a sloped sea bed (see Figure 7).

This is important as the presence of a sloping sea bed naturally causes waves to

increase in height as they approach the shore, where the depth of the water

approaches zero (Surfing Waves 2011?).

2.4 Boundary Conditions

We have two boundary conditions to consider within the simulation. The firs is an

open boundary out in the ocean at position 𝑥0, where waves will enter into the

simulation. The second is a free moving boundary which represents the shoreline

at position 𝑥𝑠 (see Figure 8). Since the water is free to flow over the sea bed there

should be a naturally occurring movement of this boundary as the shoreline

advances and recedes due to the influence of incoming waves. The height and

velocity values must be carefully considered at these two boundaries so that the

simulation remains stable.

d

bh

Figure 7: A gradually increasing sea bed

17

2.4.1 Open Ocean Boundary

When calculating numerical derivatives using the central difference formula at

positions 𝑥𝑖, values are required at 𝑥𝑖−1 and 𝑥𝑖+1. When considering the boundary

out in the ocean at position 𝑥0 we realise no velocity or height values exists at

position 𝑥−1 so we must estimate these values ourselves. Since water is generally

flowing into the simulation at this boundary it is safe to assume the particle outside

the boundary at position 𝑥−1 has the same departure velocity as the particle on the

boundary at position 𝑥0 so that �̃�−1 = �̃�0. It is also safe to assume that the height

of the water outside the boundary at position 𝑥−1 and time 𝑡𝑛+1 will be similar to

the height of the water on the boundary at position 𝑥0 and time 𝑡𝑛 so we can make

them equal 𝒉−1
𝑛+1 = 𝒉0

𝑛. We can also say that the ground level at position 𝑥−1 is

equal to the ground level at position 𝑥0 , 𝑏−1 = 𝑏0 , since the ground level is

constant throughout the simulation.

2.4.2 Moving Shoreline Boundary

The second boundary in the simulation is the shoreline at position 𝑥𝑠 and is not a

fixed boundary. This boundary is not treated the same as the boundary at 𝑥0 since

velocity and height values beyond the boundary do exist. The 2D height field does

not just cover the region from the boundary at 𝑥0 to the shoreline at 𝑥𝑠, it stretches

Open Ocean Boundary at 𝑥0 Moving Shoreline Boundary at 𝑥𝑠

Figure 8: Side view of the simulation with the two boundaries

18

beyond 𝑥𝑠 and up the shore to allow for the movement of the shoreline. The depth

of the water at positions greater than 𝑥𝑠 is very small and therefore negligible since

no water is present at these positions. To reduce numerical error, the velocity at

positions greater than 𝑥𝑠 is forcibly set to zero. All positions on the height field

greater than 𝑥𝑠 are naturally hidden beneath the shore (see Figure 8) since the

depth of the water is very small and the mesh of the sea bed is raised by a small

value to account for this.

2.5 Interactions with the Shoreline

For simplicity the whole range of the height field is not considered whilst solving

the shallow-water equations to obtain updated height and velocity values since the

region above the shoreline contains no water. Only the region from 𝑥0 to 𝑥𝑠 is

considered. At a time 𝑡𝑛 the water depth at position 𝑥𝑠−1 will be greater than zero

and at position 𝑥𝑠 the water depth will be zero (see Figure 9). The height and

velocity at position 𝑥𝑠+1 will both be zero as there is no water present to the right

hand side of the shoreline. Depending on the rest of the simulation, at time 𝑡𝑛+1

the height of the water at position 𝑥𝑠 may rise to become greater than zero so that

the shoreline boundary advances from position 𝑥𝑠 to 𝑥𝑠+1. The same also applies

for a receding shoreline, where the height of the water at time 𝑡𝑛+1 and position

𝑥𝑠−1 may drop to zero so that the shoreline boundary recedes from position 𝑥𝑠 to

𝑥𝑠−1.

𝑥𝑠−1 𝑥𝑠 𝑥𝑠+1

Figure 9: Shoreline boundary at 𝒙𝒔

19

Although the depth of the water at position 𝑥𝑠 is zero this does not mean the

velocity at this position should be zero. From Figure 9 it can be seen that water just

touches position 𝑥𝑠 . At the next time step a particle at position 𝑥𝑠 will be

considered and its departure point �̃�𝑠
𝑛 will need to be calculated. This requires the

particle to have a velocity unless the water is at complete rest, in which case the

shoreline will not move.

The shoreline is a special case boundary where continual wetting and drying

occurs either side of the boundary as the water advances and recedes over the sea

bed. This transition should be smooth so that it is realistic. However the

movement of the shoreline can be prone to sticking and is often jittery. To solve

this, the velocity of the water at the boundary 𝑥𝑠 is adjusted, using values from

Khan and Lai (2014), to keep the movement of the shoreline smooth. When

𝒉𝑠−1
𝑛 > 𝒉𝑠

𝑛, the height of the water at 𝑥𝑠−1 is greater than the height of the water

at 𝑥𝑠 then the following amount is added to the velocity at 𝑥𝑠 to keep the shoreline

moving smoothly:

𝒖𝑠
𝑛+= 2√𝑔(𝒉𝑠−1

𝑛 − 𝒉𝑠
𝑛)

2.6 Propagating Waves

In order to create breaking waves in a shoreline water simulation, waves must first

be propagated into the simulation. This is done by periodically applying harmonic

motion to adjust the height of the water at the open boundary at 𝑥0, which sends

sine waves into the simulation (see Figure 10). These waves gradually steepen as

they approach the shore. The height of the waves propagated into the simulation

20

can be adjusted along with the frequency of their propagation. Different

frequencies and different heights of waves have different effects on the simulation

as a whole and determine if/when a wave will become steep enough to break.

2.7 Locating and Tracking Waves with Potential to Break

Whether waves within the simulation will break or not is determined by the

steepness of their front. All of the waves in the simulation are located by sweeping

across the height field from position 𝑥𝑠 to 𝑥0, finding positions with sufficiently

steep gradients which then become the fronts of waves that have the potential to

break (see Figure 11).

Figure 10: Wave propagation from the open boundary

Wave Peak (highest point)

Wave Front (steepest gradient)

Direction of travel

Figure 11: A wave with the potential to break

21

The peak position of each wave is then located by finding the highest point behind

the wave front. Since all waves travel in the same direction, towards the shore, the

peak of the wave will always be behind. Since we know the direction a wave is

travelling, we can use advection to transport this location forward to more quickly

determine the updated position of the wave front for every time step of the

simulation. The updated wave front position is then used to update the position of

the peak of the wave.

2.8 Creating and Animating Breaking Waves

Since the shallow-water equations do not account for three-dimensional flows

they cannot model features such as breaking waves which overturn. We must

account for this and add the functionality of breaking waves on top of the

simulation. Having previously detected waves with the potential to break we can

periodically project particles forward from the peak of the wave to form a mesh of

water to represent the overturning wave (see Figures 12 and 13).

Particles are projected from the peak of the wave with a forward velocity directly

proportional to the steepness of the wave front. Particles are given an initial

vertical velocity directly proportional to the difference in height between the

Figure 13: Mesh formed by connecting

projected particles
Figure 12: Particles spawn from the peak of

waves

22

water at position 𝑥𝑝 and 𝑥𝑝−1, where 𝑥𝑝 is the position at the peak of the wave.

This means that a wave whose peak is flatter will project particles with a smaller

vertical velocity. The position of these particles is relative to the peaks from which

they were spawned so that they move along with the wave. The velocities of

particles are unaffected by the shallow-water equations and are only affected by

the force of gravity.

As seen in Figure 13 a mesh of water is created along the wave to emulate the

overturning nature of the wave. This mesh of water is created by connecting the

projected particles, starting from the peak of the wave, and creating vertices for

the mesh at these points. As the particles move through space the vertices of the

mesh are appropriately updated so the mesh is constantly changing. If a wave

slows down and its peak starts to recede then the wave has lost its potential to

break so will not project any more particles. This leads to the current mesh of

particles falling and crashing back into the height field.

2.9 Merging Breaking Waves into the Surface of the Water

Once the particle at the end of the mesh collides with the surface of the water (see

Figure 14) there is the problem of deciding how the overturning wave should best

flow back into the surface of the water. The mesh should blend seamlessly into the

height field to ensure the breaking wave and the surface of the water appear as

one. This has been achieved by raising all of the points on the height field which

are under the mesh up to the height of the mesh and then removing the mesh (see

Figure 15). The velocity of the water at these points is then set to the value of half

of the velocity of the water at the peak of the wave. This keeps the water flowing

smoothly towards the shore and also looks natural.

23

Raising the height field does introduce more water into the simulation, however it

will not lead to an increase in the volume of water in the simulation over long

periods of time. The height of the water is maintained at a constant level (1 metre)

at the open boundary so any excess water will naturally leave the simulation. The

temporary increase in water is not noticeable, especially since there is a constant

flow of water which causes the shoreline to continually advance and recede.

2.10 Making the Simulation Photorealistic

As explained earlier, enhancing the photorealism of the simulation is one of the

toughest challenges dues to the complexity of water and its behaviour, especially

when dealing with breaking waves. In a simple and calm ocean water simulation,

photorealism is not too difficult to achieve. However a shoreline water simulation

with waves that approach the shore and break proves a tougher challenge when

striving for photorealism. This is due to the added complexity that breaking waves

bring to the simulation, where splashes and foaming of the water now need to be

considered when looking to make the simulation photorealistic.

Figure 14: The furthest particle in the mesh

hitting the surface of the water
Figure 15: Height field raised to join the

particles in the mesh

24

2.10.1 Colour and Surface Reflections

To produce photorealistic water it must reflect the surrounding environment, and

it should also be coloured correctly. The colour given to the water comes from a

blend of the reflected sky and a defined water colour. This blend is created from

the Fresnel effect which states that the amount of reflection seen in a surface is

dependent on the angle the surface is viewed at (Bim 2001). Reflecting the sky also

emulates the effect of specular lighting where the sun is reflected, causing the

water to glisten in the sun light.

To produce accurate reflections the three-component normal vectors to the surface

at every vertex on the height field must be calculated. Calculating the normal

vectors for every vertex in three-dimensional space at every frame can become

very computationally expensive. However, due to the nature of the simulation, the

normal vectors at each vertex will be constant along grid lines parallel to the

shoreline as the heights are equal along these grid lines. This significantly reduces

the number of calculations that would have been required if the simulation used

the more complex two-dimensional shallow-water equations.

To add detail to the surface of the water a technique called ‘Normal Mapping’ has

been used. This technique uses the red, green and blue values from a texture (see

Figure 16) to manipulate the x, y and z components of normal vectors, faking the

appearance of bumps on the surface of the water.

Figure 16: Normal map which adds detail to the water's surface

25

Figures 17 and 18 demonstrate the difference that normal mapping makes to the

surface of the water in helping to make the water more realistic.

2.10.2 Animated Ripples

With surface detail added to the water through normal mapping the detail appears

very static, which does not look convincing when waves pass through the height

field. This could be improved by translating the normal map texture over time, but

this would not be convincing. To solve the problem of a static normal map,

animated ripples have been used to manipulate the texture coordinates of the

normal map to give the appearance of unique ripples throughout the simulation

(see Figure 19).

Figure 17: Flat water surface Figure 18: Normal mapped water surface

Figure 19: Ripples animated throughout the water's surface

26

To create the impression of unique animated ripples across the surface of the water

a smaller repeating height field of size 40x40 has been created. Points within the

height field are initially set to a height of zero. Every frame, points are then

randomly chosen to be offset by a small value. By utilising and solving the two-

dimensional dampened wave equation (see Appendix B) these offset points

disperse through the height field creating ripples. Boundary values are not

required for solving the dampened wave equation since the 40x40 height field

loops round on itself.

Directly applying and repeating these ripples across the surface of the water would

give the impression rain was falling onto the water. Instead of directly applying

the ripples to the surface of the water, the normal vectors of the ripples are used to

offset the texture coordinates of the normal map. This causes an animated

disturbance within the normal map to successfully create a realistic ripple effect

that might be witnessed at the shore. The ripples are also used to slightly modify

the heights on the height field and the heights of the vertices which make up a

breaking waves mesh. This is so that the shoreline and the edge of breaking waves

do not appear completely straight, which would look unnatural.

2.10.3 Shoreline Foam

When a shoreline advances and recedes due to incoming waves, foam is produced

along the shoreline. To create a foaming effect, each point in the height field along

the line perpendicular to the shoreline stores a value based on the amount of foam

present at that point. This value is kept between zero and one, where zero equates

to there being no foam.

27

When a wave breaks and crashes back into the surface of the water, foam is

applied to the points surrounding where the wave touched the surface by setting

the values of the amount of foam to one. A layer of gradually fading foam is spread

across the shoreline by using the code from Figure 20.

Foam is dispersed across the water with the following function:

𝑓𝑖
𝑛+1 =

5𝑓𝑖
𝑛 + 3𝑓𝑖−1

𝑛 + 2𝑓𝑖+1
𝑛

10

Where 𝑓𝑖 is the amount of foam at a point 𝑖 at a time step 𝑛 . This function

disperses the foam with a bias towards the left, meaning that foam will disperse

more quickly out in the direction away from the shore and will linger for longer

towards the shore. With an advancing shoreline, more foam will be produced

since it takes longer to disperse from where the shoreline previously existed (see

Figure 21). With a receding shoreline, foam is brought back with the shoreline (see

Figure 22). This is all due to the bias in the above equation.

for (int position = 0; position < foam_width; ++position)

{

 if (foam[shoreline - position] < (foam_width - position) / foam_width)

 {

 foam[shoreline - position] = (foam_width - position) / foam_width;

 }

}

Figure 20: Code which applies foam along the shoreline

28

Figure 21: Foam produced by an advancing shoreline

Figure 22: Foam brought back by a receding shoreline

A texture (see Figure 23) is used to add detail to the foam to aid in its realism. In

the same way ripples were applied to the normal texture they are also applied to

the foam texture to give the impression that the foam is moving and is affected by

movement on the surface of the water.

Figure 23: Foam texture used to add detail to the foam

29

Figure 25: Improved foam with added detail

The detail is not applied across all of the foam but is tethered towards the edges of

the foam. By comparing Figures 24 and 25 it is shown that adding detail to the

foam makes a substantial improvement in its appearance.

Figure 24: Plain white foam

30

Figure 26: Foam applied to the mesh of a breaking wave

Generally when a wave breaks it also foams. To help a breaking wave stand out

and to stop it from visually blending in with the rest of the water, foam is applied

to the mesh which represents the overturning water (see Figure 26).

2.10.4 Splash Particle Effects

The final visual features of the water left to consider are splashes and spray. Semi-

transparent particles have been used to emulate these visual effects. When a wave

crashes back into the surface of the water, particles are spawned across the wave

where the mesh of the wave touches the water (see Figure 27). These particles are

given a forward velocity proportional to the velocity of the wave and an upward

velocity proportional to the downward velocity of the particle which makes up the

end of the wave mesh.

31

Figure 27: Particles spawned where a wave crashed

Figure 28: Particles spawned along a wave mesh

Throughout the process of a wave breaking, from start to end, particles are

spawned along the wave mesh (see Figure 28). This livens up the breaking wave,

helping to make it more realistic and better resemble a breaking wave.

32

2.10.5 Wetting the Sand

When a shoreline advances and water flows over sand the sand gets wet and

retains the water when the shoreline recedes. Although the sand is not part of the

water it has the potential to affect the overall appearance of the simulation. Since

the moving shoreline is a prominent feature of the simulation, it is important to

ensure the sand reflects this. The sand is given the appearance of wetness by

darkening the output value in the pixel shader. Over time the sand dries and will

return to maximum wetness when it is next covered by the shoreline.

Figure 29: Sand is made wet by the moving shoreline

33

Chapter 3. Results and Discussion

This chapter will now evaluate the simulation with regards to its performance and

determine how visually realistic it is in order to address the research question:

“How realistic can a simulation of shoreline water be in a real-time application

which also incorporates breaking waves?”

3.1 Performance Analysis

The application’s performance was analysed using high resolution profiling code

from Bremner (2010). This allowed specific components of the simulation to be

profiled to determine where the simulation spends most of its time. All testing was

carried out using a release mode build of the application on a laptop with the

following specifications:

Table 1: Specifications of the laptop used for testing

CPU Intel Core i5-3230M (3 MB Cache, 2.60 GHz)

RAM 6 GB

GPU Intel HD Graphics 4000

OS Microsoft Windows 10, 64-bit

34

The performance of the simulation is important if it is to be used within video

games. As explained earlier the simulation should “be at least around 3–20 times

faster” (Kellomäki 2012, p.11) than real-time due to the other systems in video

games which require processing power.

The simulation was profiled with a height field of dimensions 250x200, where 200

is the length of the height field along the axis parallel to the shoreline, and 250 is

the length of the height field along the axis perpendicular to the shoreline. These

values were appropriately chosen so that the height field extends into the distance,

imitating a scene within a video game. The results shown in Table 2 were

produced by running the simulation over a period of twenty seconds. The ‘number

of executions’ column in Table 2 shows how many times each component of the

simulation was executed over the test period. Some components of the simulation

will always be executed every frame, whereas wave meshes and splash particles

will not always exist so are not updated.

Table 2: Results from profiling components of the simulation

Component of the simulation Number of executions

over 1245 frames

Time in milliseconds

per execution

Complete Simulation 1245 1.683

Update height field and normals 1245 0.987

Solving shallow-water equations 1245 0.559

Updating wave meshes 429 0.044

Update ripples and normals 1245 0.025

Update the sands wetness 1245 0.012

Update the splash particles 521 0.009

35

As shown in Table 2, the whole simulation takes on average just 1.683 milliseconds

to execute. In the context of a gaming application we can consider real-time to be

a speed of 60fps, where one frame lasts for 16.667 milliseconds. With an execution

time of 1.683 milliseconds, the simulation is processed 9.9x faster than real-time,

using only 10% of the processing power available in a single frame.

3.1.1 Frame Rate

Having a fast execution time does not guarantee that the rendering of the

simulation will be fast. The uncapped frame rate of the application was tested with

the same 250x200 sized height field over a period of twenty seconds. The results

are presented in Table 3 below, showing the difference between a windowed and

full screen version of the application. Included in the application is an animated

sky which compliments the simulation, however this will have a negative effect on

the frame rate.

Table 3: Frame rate tested in windowed and full screen modes

Mode Frames per second Milliseconds per frame

Windowed (800x600) 475.737 2.102

Full Screen (1600x900) 148.082 6.753

3.1.2 Effect of the Height Field’s Size on Simulation Time

From Table 2 it is found that the most computationally expensive components of

the simulation are numerically solving the 1D shallow-water equations and

updating the vertices of the height field (including the normals). These

computational times are directly affected by the size of the height field (see Figures

30 and 31).

36

The effect that the length of the shoreline has on the performance of the

simulation can be seen in Figure 30. Since the shallow-water equations are only

solved along the axis perpendicular to the shoreline, extending the length of the

shoreline has no effect on the time taken to solve the shallow-water equations. By

increasing the length of the shoreline, the number of vertices within the height

field is also increased, thereby increasing the overall time taken to update the

height field.

Figure 30: Effect of shoreline length on simulation time

Extending the height field in the direction perpendicular to the shoreline has a

greater impact on the simulation time (see Figure 31). This is due to the increased

number of points to solve the shallow-water equations over.

0

0.5

1

1.5

2

2.5

3

250x25 250x50 250x100 250x200 250x400

Ti
m

e
(m

ill
is

ec
o

n
d

s)

Height field dimensions (250 by shoreline length)

Shallow-Water Equations Update Height Field Remainder

37

Figure 31: Effect of ocean length on simulation time

By comparing the results from Figures 30 and 31 (see Figure 32) it is observed that,

for height fields of equal areas, the simulation will run faster where the length of

the height field along the shoreline is longer.

Figure 32: Comparison of results from Figures 30 and 31

0

0.5

1

1.5

2

2.5

3

3.5

4

100x250 200x250 400x250

Ti
m

e
(m

ill
is

eo
n

d
s)

Height field dimensions (ocean length by 250)

Shallow-Water Equations Update Height Field Remainder

0

0.5

1

1.5

2

2.5

3

3.5

4

250x100 100x250 250x200 200x250 250x400 400x250

Ti
m

e
(m

ill
is

ec
o

n
d

s)

Height field dimensions (ocean length by shoreline length)

Shallow-Water Equations Update Height Field Remainder

38

3.1.3 Stability of the Simulation

In order to best demonstrate the simulation, the user has the ability to modify the

heights of the propagated waves, ranging from a height of 0.1 to 0.5 metres. The

simulation was left to run for a period of four hours at both the minimum and

maximum wave heights. On both occasions the simulation remained stable, with

no drop in water level.

3.2 Visual Analysis

With regards to the visual realism of the simulation, it is understood that the

simulation should be believable and photorealistic if it is to be used within a

modern video game.

3.2.1 Believability of the Simulation

Since the simulation uses the 1D shallow water equations, waves can only be

produced along one axis. This restricts the topography of the sea bed and the land

as it must remain consistent along the length of the shoreline. This of course limits

the believability any shoreline water simulation can achieve, but the

computational expense of using the 2D shallow-water equations would be too

great for a real-time simulation.

Figure 33 depicts the progression of a wave breaking as it approaches the shoreline.

Here the shoreline is seen to be receding as the wave approaches, accurately

replicating the motion of water at a shoreline. The method used to produce the

wave mesh, combined with the particle effects, successfully creates the impression

of a breaking wave that would be seen at a beach. Although the wave breaks

uniformly along its length, the simulation can be considered to be believable.

39

Figure 33: Progression of a breaking wave

3.2.2 Photorealism of the Simulation

All of the steps taken in an attempt to achieve photorealism within the simulation

are necessary, with each improving its visual appearance. The use of particles to

represent the breaking of waves significantly improves their photorealism as

particles successfully distort the unnatural straightness of the waves. Particles also

highlight the turbulence of crashing waves, with water splashing up from the

surface upon their impact. Although particles visually add to the simulation they

do not blend into the surface of the water as would be expected. They often appear

detached and separate from the water (see Figure 33).

As seen in Figure 33 the foam produced at the shoreline successfully conveys its

movement caused by the incoming waves. The methods used to create and render

the foam provides detail and movement which bears a resemblance to foam

observed at a beach (see Figure 34).

40

Figure 35: (L) Photo of shoreline water (R) Screenshot of simulated water

Figure 34: (L) Photo of shoreline foam (R) Screenshot of simulated foam

The surface detail on the water that was created from animated ripples and normal

mapping, produces a surface similar to that seen in real life examples of the ocean

(see Figures 35 and 36).

By reflecting the sky, including the clouds and the sun, the surface of the water is

made photorealistic as the sunlight glistens across the water. This photorealism is

maintained as the changing colour of the sky is reflected in the water (see Figure

36 and 37).

41

Figure 36: The surface of the water reflecting the sun and the sky

Figure 37: The colour of the water changing as the sky changes

From the results discussed above, the simulation can be considered somewhat

photorealistic as there are areas where improvements could yet be made.

Improvements to existing visual features can be incorporated with relative ease as

the application provides a good foundation to build upon. When considering the

photorealism of the simulation alongside its believability we can say that, overall

the simulation is realistic and produces visually satisfying results.

42

Chapter 4. Conclusions and Future Work

The project was undertaken with the aim to incorporate breaking waves into a

real-time simulation of shoreline water, suitable for use in video games. After

investigating the methods available for simulating shallow water and breaking

waves, a simulation was then developed. The simulation produced was then

evaluated to answer to the project’s research question:

“How realistic can a simulation of shoreline water be in a real-time application

which also incorporates breaking waves?”

Although not perfect, the simulation produced has been shown to be realistic

whilst running faster than real-time. It represents shoreline water with breaking

waves in a believable manner and also displays a good level of photorealism,

accurately resembling the visual features of shoreline water. The most apparent

problem with the simulation is the uniformity of breaking waves. Further

investigation could look to resolve this and further improve the believability of the

simulation, as it would more accurately reflect the behaviour of shoreline water.

To answer the research question, a simulation of shoreline water which also

incorporates breaking waves has the potential to be fairly realistic at real-time.

Over the course of the project, the four objectives outlined in the introduction

have been met as well as achieving the two aims of the project and successfully

answering the research question. With only a few minor improvements the

current simulation could be made more realistic, making it suitable for use within

a video game environment.

43

4.1 Future Work

Even though breaking waves have successfully been incorporated into a simulation

of shoreline water, there is no variation within the waves other than their height.

Waves seldom break along their whole length at once. The breaking of a wave

usually takes place at single points along the wave, then spread out across the

length of the wave. Given more time the generation of wave meshes and the

spawning of particles could be adapted to make waves break in a more believable

manner.

The simulation could be expanded to allow for more complex shoreline

topographies, since the simulation is currently restricted to shorelines with a

consistent topography along the length of the shoreline. This would require the

use of the 2D shallow-water equations, greatly increasing the computational

expense of the simulation. To reduce an incurred computational expense, the area

manipulated by the 2D shallow-water equations could be limited to a smaller area

close to the shoreline. The boundary values could then be manipulated from a

second height field in the ocean, producing waves through methods such as the

Sum of Sines Approximation (Finch 2007).

Visually there could always be room for improvement within the simulation. One

visual aspect of shorelines which was not considered was the reflectivity of wet

sand. This is only noticeable during a rising or setting sun (see Figure 35) and

would be trivial to incorporate into the simulation.

APPENDICIES

45

APPENDIX A: Euler’s Equations

The following two equations are known as the Euler equations (Bridson and

Müller-Fischer 2007, p. 9). They are a simplification of the Navier-Stokes

equations and model an ideal fluid which has no viscosity with a constant density:

𝛿𝒖

𝛿𝑡
+ 𝒖 ∙ ∇𝒖 = −∇

𝑝

𝜌
+ 𝒈 (1)

∇ ∙ 𝐮 = 0 (2)

Where 𝒖 is the velocity, 𝑝 is the pressure, 𝜌 is the density of the fluid and 𝒈 is the

gravitational force. The first equation, known as the momentum equation, is

essentially Newton’s 2nd Law 𝐹 = 𝑚𝑎 . The second equation, known as the

incompressibility condition, states that the volume of the fluid remains constant

throughout the simulation (Bridson and Müller-Fischer 2007, p. 7).

46

APPENDIX B: Solving the 2D Dampened Wave Equation

The following equation is the two-dimensional wave equation:

𝛿2𝒉

𝛿𝑡2
= 𝐶2 (

𝛿2𝒉

𝛿𝑥2
+

𝛿2𝒉

𝛿𝑦2
) (1)

Where 𝒉 is the height as a function of 𝑥, 𝑦 and 𝑡. 𝐶 is defined as a constant wave

speed. This equation is a second order linear partial differential equation which

can be solved by using the central difference formula and taking ∆𝑥 = ∆𝑦 to give:

𝒉𝑖𝑗
𝑛+1 − 2𝒉𝑖𝑗

𝑛 + 𝒉𝑖𝑗
𝑛−1

∆𝑡2
= 𝐶2

(𝒉𝑖−1,𝑗
𝑛 + 𝒉𝑖+1,𝑗

𝑛 + 𝒉𝑖,𝑗+1
𝑛 + 𝒉𝑖,𝑗−1

𝑛 − 4𝒉𝑖𝑗
𝑛)

∆𝑥2
 (2)

When rearranged for 𝒉𝑖𝑗
𝑛+1 this becomes:

𝒉𝑖𝑗
𝑛+1 = 2𝒉𝑖𝑗

𝑛 − 𝒉𝑖𝑗
𝑛−1 + 𝐾2(𝒉𝑖−1,𝑗

𝑛 + 𝒉𝑖+1,𝑗
𝑛 + 𝒉𝑖,𝑗+1

𝑛 + 𝒉𝑖,𝑗−1
𝑛 − 4𝒉𝑖𝑗

𝑛) (3)

47

Where

𝐾 =
𝐶∆𝑡

∆𝑥

With a dampening term the two-dimensional wave equation is:

𝛿2𝒉

𝛿𝑡2
= 𝐶2 (

𝛿2𝒉

𝛿𝑥2
+

𝛿2𝒉

𝛿𝑦2
) + 𝐵

𝛿𝒉

𝛿𝑡
 (4)

Where 𝐵 is a constant for the amount of dampening applied. Using the central

difference formula the dampening term becomes:

𝐵
𝛿𝒉

𝛿𝑡
= 𝐵

𝒉𝑖𝑗
𝑛+1 − 𝒉𝑖𝑗

𝑛−1

2∆𝑡
 (5)

By adding the dampening term (5) to the wave equation (2) and rearranging for

𝒉𝑖𝑗
𝑛+1 we arrive at equation (6):

𝒉𝑖𝑗
𝑛+1

=
2𝒉𝑖𝑗

𝑛 − 𝒉𝑖𝑗
𝑛−1 + 𝐾2(𝒉𝑖−1,𝑗

𝑛 + 𝒉𝑖+1,𝑗
𝑛 + 𝒉𝑖,𝑗+1

𝑛 + 𝒉𝑖,𝑗−1
𝑛 − 4𝒉𝑖𝑗

𝑛) +
𝐵∆𝑡𝒉𝑖

𝑛−1

2

1 +
𝐵∆t

2

 (6)

48

For equation (6) to remain stable the following condition should be satisfied:

0 < ∆𝑡 <
∆𝑥

𝐶√2

REFERENCES

50

REFERENCES

Assassin’s Creed III. 2012. [disk]. PC. Ubisoft.

Assassin’s Creed IV: Black Flag. 2013. [disk]. PC. Ubisoft.

Bates, J.R. et al. 1993. A semi–Lagrangian approach to the shallow water equations.

6th Copper Mountain Conf. on Multigrid Methods, NASA Conference Publication
3224. pp. 593–604.

Bim, J. 2001. Fresnel Effect. [online]. 3dRenderer.Com. Available from:

http://www.3drender.com/glossary/fresneleffect.htm [Accessed 21 April 2016].

Bremner, J. 2010. cRunWatch: Code Time Profiler. [Source code]. Available from

http://66.199.140.183/cgi-bin/ravenset.cgi/index [Accessed 24 April 2016].

Bridson, R. and Müller-Fischer, M. 2007. Fluid simulation: SIGGRAPH 2007

course notes. ACM SIGGRAPH 2007 courses. pp. 1–81.

Bruan, H., Raupp Musse, S. and Strube de Lima, D. 2010. A Model for Real Time

Ocean Breaking Waves Animation. 2010 Brazilian Symposium on Games and
Digital Entertainment. pp. 19-24

http://www.3drender.com/glossary/fresneleffect.htm
http://66.199.140.183/cgi-bin/ravenset.cgi/index

51

CFD Online. 2012. Navier-Stokes Equations. [online]. Available from:

http://www.cfd-online.com/Wiki/Navier-Stokes_equations [Accessed 26

November 2015].

Crespin, B. et al. 2011. A survey of ocean simulation and rendering techniques in

computer graphics. Computer Graphics Forum. 30(1): pp. 43-60.

Doom. 1993. [disk]. MS-DOS. GT Interactive.

The Elder Scrolls III: Morrowind. 2002. [disk]. PC. Bethesda Softworks.

Finch, M. 2007. Chapter 1. Effective Water Simulation from Physical Models. In:

R. Fernando, ed. GPU Gems: Programming Techniques, Tips and Tricks for Real-
Time Graphics. [online]. 2004. Available from:

http://http.developer.nvidia.com/GPUGems/gpugems_ch01.html [Accessed 27

October 2015].

GoldenEye 007. 1997. [cartridge]. Nintendo 64. Nintendo.

Grand Theft Auto: San Andreas. 2004. [disk]. PlayStation 2. Rockstar Games.

Grand Theft Auto V. 2014. [disk]. PlayStation 4. Rockstar Games.

Gross, M. et al. 2007. Real-time breaking waves for shallow water simulations. PG
’07: Proceedings of the 15th Pacific Conference on Computer Graphics and
Applications. pp. 39-46.

Hestenes, M. and Stiefel, E. 1952. Methods of conjugate gradients for solving linear

systems. Journal of Research of the National Bureau of Standards. 49 (6): pp. 409-

436.

http://www.cfd-online.com/Wiki/Navier-Stokes_equations
http://http.developer.nvidia.com/GPUGems/gpugems_ch01.html

52

Khan, A.A. and Lai, W. 2014. Chapter four: One-dimensional conservation laws.

Modelling Shallow Water Flows Using the Discontinuous Galerkin Method.

Florida: CRC Press. 2014, pp. 62-64.

Kayne, F. 2014. 3D Water Effects: Here's What's Involved. [online]. Available

from:

http://gamasutra.com/blogs/FrankKane/20140122/209052/3D_Water_Effects_Here

s_Whats_Involved [Accessed 27 October 2015].

Kellomäki, T. 2012. Water simulation methods for games: a comparison. MindTrek
'12 Proceeding of the 16th International Academic MindTrek Conference. pp. 10-

14.

Kotzer, Z. 2015. Rendering Realistic Water Is Still Game Development’s Moby
Dick. [online]. Available from: http://motherboard.vice.com/read/rendering-

realistic-water-is-still-game-developments-moby-dick [Accessed 26 November

2015].

Layton, A. and Van de Panne, M. 2002. A Numerically Efficient and Stable

Algorithm for Animating Water Waves. The Visual Computer. 18(1): pp. 41-53.

The Legend of Zelda: The Wind Waker. 2002. [disk]. GameCube. Nintendo.

Randall, D.A. 2006. The Shallow Water Equations. [online]. Colorado State

University. Available from:

http://kiwi.atmos.colostate.edu/group/dave/pdf/ShallowWater.pdf [Accessed 16

March 2016].

Seymour, M. 2012. Assassin’s Creed III: The tech behind (or beneath) the action.

[online]. Available from: https://www.fxguide.com/featured/assassins-creed-iii-

the-tech-behind-or-beneath-the-action/ [Accessed 7 March 2016].

Shadow Warrior. 1997. [disk]. MS-DOS. GT Interactive Software.

http://gamasutra.com/blogs/FrankKane/20140122/209052/3D_Water_Effects_Heres_Whats_Involved
http://gamasutra.com/blogs/FrankKane/20140122/209052/3D_Water_Effects_Heres_Whats_Involved
http://motherboard.vice.com/read/rendering-realistic-water-is-still-game-developments-moby-dick
http://motherboard.vice.com/read/rendering-realistic-water-is-still-game-developments-moby-dick
http://kiwi.atmos.colostate.edu/group/dave/pdf/ShallowWater.pdf
https://www.fxguide.com/featured/assassins-creed-iii-the-tech-behind-or-beneath-the-action/
https://www.fxguide.com/featured/assassins-creed-iii-the-tech-behind-or-beneath-the-action/

53

Super Mario Sunshine. 2002. [disk]. GameCube. Nintendo.

Super Mario 64. 1996. [disk]. Nintendo 64. Nintendo.

Surfing Waves. 2011?. How Waves Break. [online]. Available from:

http://www.surfing-waves.com/waves/how_waves_break.htm [Accessed 19 April

2016].

NOAA. 2016. Oceans & Coasts. [online]. Available from:

http://www.noaa.gov/oceans-coasts [Accessed 5 March 2016].

Rath, R. 2014. Why Games are Terrible at Water. [online]. Available from:

http://www.escapistmagazine.com/articles/view/video-

games/columns/criticalintel/11840-Why-Games-are-Terrible-at-Water [Accessed

26 November 2015].

Robert, A. 1981. A semi-Lagrangian, semi-implicit numerical integration scheme

for the primitive meteorological equations. Atmos-Oceans. 19: pp. 35–46.

Wave Race 64. 1996. [cartridge]. Nintendo 64. Nintendo.

Wong, M. et al. 2013. A cell-integrated semi-Lagrangian semi-implicit shallow-

water model (CSLAM-SW) with conservative and consistent transport. Monthly
Weather Review. 141: pp. 2545-2560.

http://www.surfing-waves.com/waves/how_waves_break.htm
http://www.noaa.gov/oceans-coasts
http://www.escapistmagazine.com/articles/view/video-games/columns/criticalintel/11840-Why-Games-are-Terrible-at-Water
http://www.escapistmagazine.com/articles/view/video-games/columns/criticalintel/11840-Why-Games-are-Terrible-at-Water

BIBLIOGRAPHY

55

BIBLIOGRAPHY

Burden, R.L. and Faires, J.D. 2001. Chapter 7.5: The Conjugate Gradient Method.

Numerical Analysis. 7th ed. Brooks/Cole Publishing Company pp. 464-478.

Gourlay, M.J. 2014. Fluid Simulation for Video Games (part 1). [online]. Available

from: https://software.intel.com/en-us/articles/fluid-simulation-for-video-games-

part-1 [Accessed 7 March 2016].

Kontaxis, C. 2013. Fluid Simulation for Computer Graphics. [Unpublished Master’s

thesis]. Utrecht University.

Robinson, K. 2015. Here’s How Nintendo Created the Genius Water Physics in
Super Mario Sunshine. [online]. Available from:

http://www.gamnesia.com/news/heres-how-nintendo-created-the-genius-water-

physics-in-super-mario-sunshine [Accessed 6 March 2015].

Sherrod, A. 2008. Chapter 14: Water Rendering. Game Graphics Programming.

Course Technology. 2008. pp. 511-524.

https://software.intel.com/en-us/articles/fluid-simulation-for-video-games-part-1
https://software.intel.com/en-us/articles/fluid-simulation-for-video-games-part-1
http://www.gamnesia.com/news/heres-how-nintendo-created-the-genius-water-physics-in-super-mario-sunshine
http://www.gamnesia.com/news/heres-how-nintendo-created-the-genius-water-physics-in-super-mario-sunshine

