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Abstract 

 

 

 

3D water simulations in video games are becoming more and more realistic. One of 

the biggest challenges with simulating realistic water is the amount of processing 

power that is required, something games simply cannot afford to expend. Breaking 

waves are all too often neglected in water simulations as they are computationally 

expensive and usually have no impact on the gameplay. However, there is 

potential for shoreline water simulations to attain higher levels of realism by 

incorporating breaking waves. This project investigates and builds upon current 

techniques used for simulating breaking waves in order to determine how realistic 

a real-time simulation of shoreline water could be. 

An application was developed, demonstrating a real-time simulation of shoreline 

water which incorporates breaking waves. The simulation uses the one 

dimensional shallow-water equations in order to simulate the flow of water 

towards the shoreline. Waves were located and tracked within the simulation so 

that meshes could be constructed to create the impression of overturning waves. 

Particles were generated from the meshes along the length of the wave to visually 

reflect the breaking waves. The simulation was evaluated with regards to 

performance and its visual appearance. Overall the simulation was found to be 

realistic, concluding that shoreline water simulations which incorporate breaking 

waves have the potential to feature in video games. 
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INTRODUCTION 

 

 

 

Water covers 71% of our planet (NOAA 2016) and is present in our everyday lives 

therefore it should come as no surprise that water features in so many video games. 

However, simulating realistic water at real-time is a challenge for developers, even 

with today’s processing power. Accurate water simulations are computationally 

expensive and water simulations in video games need to be fast and also look 

convincing. 

Water is complex, it behaves and responds very differently to rigid bodies. It is 

made up of particles which are free to move independently of each other, 

describing nonlinear motion. Although the volume of water in a simulation may 

remain constant its topology can be constantly changing based on a whole host of 

external factors. Coupling real-time rigid body physics interactions with fluid 

simulations can also prove to be a real challenge in video games. 

Accurate water simulations have existed in engineering for years using models 

such as the Navier-Stokes equations which are the basic equations that govern 

fluid dynamics (CFD Online 2012). However these equations, which strive for 

accuracy, are far too complex to solve for large 3D water simulations in video 

games at real-time. The equations need to be simplified or other techniques for 

simulating water need to be used. Grid based simulations are often used for large 

body water simulations like rivers, oceans and lakes whereas smaller features like 
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fountains, dripping taps and broken fire hydrants might use particle based 

simulations, animations or other more suited techniques. 

Georges Torres, Senior Technical Director for Assassin’s Creed III (2012), said “In 

feature films just a decade ago, rendering oceans was reason enough to seek an 

Oscar.” (Seymour 2012). Comparing the jagged water’s edge from Morrowind 

(2002) to the stunning oceans of Assassin’s Creed Black Flag (2013) there is no 

doubt in the past decade water simulations have come a long way in video games 

(see Figures 1 and 2). 

 

 

Figure 1: Water from ‘The Elder Scrolls III: Morrowind’ 

 

 

Figure 2: Ocean from ‘Assassin's Creed IV: Black Flag’ 
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Efficiency is key in the simulation of water in video games. All the processing 

power available cannot be given solely to the water simulation as other areas of the 

game usually require a lot of processing power. This means the simulation should 

“be at least around 3–20 times faster” (Kellomäki 2012, p.11) than real-time, 

depending on the complexity of the game. 

The believability and the photorealism of water in video games is also an 

important aspect of water simulations since games are becoming more and more 

photorealistic and water needs to keep up with the rest of the graphics to avoid 

looking out of place. One area where water lacks realism in video games is the 

absence of breaking waves as waves approach the shoreline. “Real breaking waves 

at the shore that curl over themselves is a very tough problem and generally isn't 

implemented.” (Kayne 2014). Games can and do get away with ignoring breaking 

waves since it is down to environmental conditions that govern the size of waves 

and whether they will break and come crashing towards shore. No one is going to 

complain if a game doesn’t include breaking waves, but it would look nice and it 

would definitely take shoreline water simulations to the next level in video games. 

 

 

Figure 3: Shoreline water in ‘The Legend of Zelda: The Wind Waker’ 
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The Legend of Zelda: The Wind Waker (2002) is an early example of a game which 

included a subtle interaction between the sea and the shore with advancing and 

receding foam (see Figure 3). Super Mario Sunshine (2002) also included shoreline 

interaction along with numerous other visual effects and was hailed for having 

beautiful water for its time. 

As hardware has evolved over the last decade shoreline water simulations have 

also improved as shown by the dramatic difference between the beach water in 

Grand Theft Auto (GTA): San Andreas (2004) for PlayStation 2 and the water in 

GTA V (2014) for PlayStation 4 (see Figure 4). 

 

 

Figure 4: Shoreline water in ‘GTA: San Andreas’ (PS2) vs ‘GTA V’ (PS4) 

 

Adding breaking waves to real-time water simulations has the potential to greatly 

improve the realism of water within video games and increase the wow factor 

associated with beautiful water simulations, but this is so often neglected due to 

the complexity breaking waves add to the water simulations (Rath 2014). This 

project will seek to investigate the area of breaking waves along with shoreline 

water simulations in video games by attempting to answer the following question: 
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Research Question 

“How realistic can a simulation of shoreline water be in a real-time application 

which also incorporates breaking waves?” 

 

Aims 

The aims of the project are to: 

 Determine the best approach to incorporating breaking waves into an 

efficient and realistic simulation of shoreline water. 

 Produce a realistic simulation of shallow water that interacts with a 

shoreline in a real-time application. 

 

Objectives 

 Research how shallow tidal water interacts with shorelines and under what 

conditions waves break. 

 Investigate existing and possible techniques for simulating shallow water 

and breaking waves and how they can be combined. 

 Create an application which simulates shallow water that interacts with a 

shoreline and includes the capacity for breaking waves using the researched 

techniques. 

 Determine how realistic the simulation is whilst running at real-time and 

investigate areas where the simulation could be improved. 
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Chapter 1. Context 

 

 

 

1.1 Background 

As hardware has advanced over the last two decades so have the 3D water 

simulations that are found in video games. The early nineties saw the rise in 3D 

video game development which paved the way for the development of 3D water 

implementations. 3D water started out as statically textured or coloured flat planes, 

as witnessed in Doom (1993). Implementations slowly progressed as motion was 

simulated by using moving texture coordinates as seen in games such as Shadow 

Warrior (1997) and GoldenEye 007 (1997). Visually, water became more appealing 

when transparency was incorporated through alpha blending, which allowed 

players to see below the surface of the water and through other features like 

waterfalls. Surface details such as splashes and ripples began to emerge in games 

like Super Mario 64 (1996), conveying player’s interactions with the water. A huge 

step was taken towards simulating waves when the game Wave Race 64 (1996) 

replaced traditional planar water with a height field, which was able to replicate 

waves passing through water. 

Even with all the advancements made in the past two decades realistic water 

simulation is still a substantial challenge in the development of video games 

(Kotzer 2015). Extensive research has been done over the years and is still ongoing, 

looking into different methods and techniques for simulating and rendering a 

variety of different types of water within in a gaming context. There are now 

many different methods available for simulating water in video games which 

Kellomäki (2012) provides a comparison of. The nature and requirements of the 

water to be simulated determines the appropriate techniques to be used. 
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1.2 The One Dimensional Shallow-Water Equations 

To model and simulate shoreline water we can consider the water to be an ideal 

fluid which has no viscosity and the density of the fluid remains constant. This 

allows us to work with the Euler equations (see Appendix A) which are a 

simplification of the Navier-Stokes equations. A further simplification can be 

applied if we ignore the vertical component of acceleration which gives us the 

shallow-water equations (Randall 2006): 

 

𝛿𝒖

𝛿𝑡
+ 𝒖

𝛿𝒖

𝛿𝑥
= −𝑔

𝛿𝒉

𝛿𝑥
                (1) 

𝛿𝒉

𝛿𝑡
+ 𝒖

𝛿𝒉

𝛿𝑥
+ 𝒉

𝛿𝒖

𝛿𝑥
= 0             (2) 

 

Where 𝒖 and 𝒉 are functions of 𝑥 and 𝑡 alone. The first equation is derived from 

Newton’s 2nd Law 𝐹 = 𝑚𝑎 . The second equation, known as the continuity 

equation, is derived from the incompressibility condition and states that a particle 

on the surface of the fluid does not separate from the rest of the fluid. 

These simplifications greatly reduce the complexity and therefore the 

computational expense of the simulation. This makes the shallow-water equations 

more suitable for simulating water in real-time applications such as games. Since 

the simulation is only concerned with waves travelling in a single direction 

towards the shore, the one dimensional shall-water equations are sufficient to 

model the basics of shoreline water. They are also far less computationally 

expensive to compute than the more complex two dimensional shallow-water 

equations. 

However, there are limitations of using the shallow-water equations to model 

shoreline water. Since the equations do not account for three-dimensional flows 

and because of the continuity equation, breaking waves cannot be modelled by the 
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shallow-water equations alone. Although the shallow-water equations do account 

for interactions between the water and boundaries and dry zones such as a 

shoreline as the water level approaches zero. 

 

1.3 Eulerian and Lagrangian Viewpoints 

Two common approaches exist to discretize the shallow-water equations and track 

the motion of the shallow water. They are the Eulerian (grid based) and the 

Lagrangian (particle based) approaches (Bridson and Müller-Fischer 2007, p. 4). 

The Eulerian viewpoint uses a grid to track the flow of the water, calculating and 

storing the height and velocity of the water at fixed cells in the grid as the water 

flows through the grid. Eulerian schemes are easy to work with and retain the 

uniform regularity of the grid. However for an Eulerian scheme to maintain 

stability small time steps are required which impacts performance time. 

The Lagrangian viewpoint treats the water as a system of particles, calculating each 

particle’s position, height and velocity as they move and interact with surrounding 

particles. Lagrangian schemes allow for larger time steps as they are less restricted 

with stability requirements. However, the biggest drawback of Lagrangian 

schemes is they can become computationally expensive to calculate for a larger 

number of particle-particle interactions as the number of particles in a system 

increases. Also, particles which started regularly spaced usually become irregularly 

spaced as they move over time which can lead to a loss in global accuracy. 

 

1.4 Semi-Lagrangian Schemes 

Semi-Lagrangian schemes have been developed to combine the advantages of both 

Eulerian and Lagrangian schemes and were first introduced by Robert (1981). 

Semi-Lagrangian schemes use an Eulerian framework of a regular grid whilst 
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taking the discrete equations from the Lagrangian viewpoint. At every time step 

the origin of particles at fixed cells in the grid are calculated by integrating back 

along particle trajectories. The height and velocity of the particles at their origin 

can then be estimated by interpolating the values from the surrounding grid 

points. Both Bates et al. (1993) and Wong et al. (2013) demonstrate how semi-

Lagrangian schemes can be utilised to model the shallow-water equations. Layton 

and Van de Panne (2002) implemented a graphical representation (see Figure 5) to 

demonstrate their ‘numerically efficient and stable algorithm for animating water 

waves’ which takes a semi-Lagrangian approach. 

 

 

Figure 5: Layton and Van de Panne's (2002) animated water waves 

 

 

1.5 Related Work 

Implementing water that includes waves with the capability of breaking and 

crashing poses a difficult challenge for video game developers for a few reasons. 

Eulerian Grid based simulations that use height-fields with a mesh to represent 

water suffer from the problem that a mesh which is manipulated by a height-field 
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cannot fold over itself to allow a wave to break. On the other hand Lagrangian 

particle based simulations are too resource intensive and expensive to compute for 

large bodies of water in video games. 

Research has already been carried out looking at real-time breaking waves in 

water simulations. Gross et al. (2007) incorporate breaking waves into their water 

simulation, which uses the shallow-water equations, by generating wave patches 

which are a mesh of connected particles projected from the peak of the waves. 

Bruan, Raupp Musse and Strube de Lima (2010) take a different approach, 

generating breaking waves by manipulating and animating the vertices of waves as 

they travel through a 2D mesh. Both examples use the more computationally 

efficient Eulerian grid based approaches as a starting point for modelling the water, 

then build upon the simulation to include breaking waves. Particles are also used 

in both examples to emulate the visual effects of foam and splashing from the 

waves as they begin to break and crash. 

 

1.6 Photorealistic Water 

Photorealistic water is not as easy to render as simply applying a texture to an 

object. Water reflects, it refracts, it ripples, it sprays, it splashes and it foams. Most 

of these details are important, depending on the nature of the water, and should be 

considered to effectively render realistic water simulations which are convincing 

and visually appealing (Kayne 2014). A more in depth discussion and analysis of 

the different water simulation techniques and methods for rendering are given in 

the paper ‘A Survey of Ocean Simulation and Rendering Techniques in Computer 

Graphics’ (Crespin et al. 2011). 

In the context of the project, where shoreline water that incorporates breaking 

waves is the focus, the following visual aspects will need to be implemented to 

maximise the photorealism of the simulation: 
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 Lighting 

 Reflection 

 Ripples 

 Splashes 

 Foam 

Refraction and water caustics are not going to be considered since the focus is on 

the water’s surface which will be turbulent, preventing viewers from viewing 

below the surface of the water in any detail.  
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Chapter 2. Methodology 

 

 

 

Having gained an understanding of the complexity behind realistic simulations of 

shallow water this chapter will now discuss the methods taken to produce a 

realistic simulation within a real-time an application. The application has been 

developed with Visual Studio 2013 in C++ and using DirectX11. The application 

allows the user to adjust the heights of waves traveling towards a shore and watch 

them break at the shoreline. 

 

2.1 Representing the Water’s Surface 

The surface of the water is represented by a 2D height field of a size 250x200 in 

the form of a 2D array of vertices. Each vertex contains three-component position 

and normal data. The normal data is used to correctly light the water and to 

calculate reflections on the water’s surface. The heights of the vertices in the 

height field will be manipulated by the one-dimensional shallow-water equations, 

with water flowing in the direction perpendicular to the shoreline (see Figure 6). 

 

 

 

 

 

 

SHORE WATER 

Figure 6: Direction of the flow of water on the 2D height field 
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2.2 Numerically Solving the 1D Shallow-Water Equations 

The approach taken to spatially discretise the shallow-water equations was an 

implicit semi-Lagrangian time integration method, since it is shown to be highly 

efficient for real-time applications as it remains stable for large time steps whilst 

also remaining capable of producing realistic waves. Adding a ground height to the 

shallow-water equations gives us equations (1) and (2) where 𝑏 is the height of the 

ground and 𝒉 is still the height of the height field. It is important to take into 

account the height of the ground as the simulation deals with a sloping shoreline. 

 

𝛿𝒖

𝛿𝑡
+ 𝒖

𝛿𝒖

𝛿𝑥
= −𝑔

𝛿𝒉

𝛿𝑥
                                        (1) 

𝛿𝒉

𝛿𝑡
+ 𝒖

𝛿(𝒉 − 𝑏)

𝛿𝑥
+ (𝒉 − 𝑏)

𝛿𝒖

𝛿𝑥
= 0             (2) 

 

Rewritten in Lagrangian form and using 𝒅 as the depth of the water, 𝒅 = 𝒉 − 𝑏, 

the shallow-water equations become: 

 

𝑑𝒖

𝑑𝑡
+ 𝑔

𝛿𝒉

𝛿𝑥
 = 0                          (3) 

𝑑𝒉

𝑑𝑡
− 𝒖

𝛿𝑏

𝛿𝑥
+ 𝒅

𝛿𝒖

𝛿𝑥
= 0             (4) 

 

In a semi-Lagrangian scheme we calculate the derivatives from the trajectories of 

particles at positions 𝑥𝑖 at a time of 𝑡𝑛+1 and its position at a time of 𝑡𝑛 which is 

the departure point of the particle, denoted as �̃�𝑖
𝑛. 

 

�̃�𝑖
𝑛 = 𝑥𝑖 − ∆𝑡𝒖𝑛(𝑥𝑖)                 (5) 
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With this we can approximate the Lagrangian derivatives with equations (6) and 

(7) where �̃� and �̃� are the velocity and height of the particle at departure point �̃�𝑖
𝑛. 

 

𝑑𝒖

𝑑𝑡
=

𝒖𝑛+1 − �̃�𝑛

∆𝑡
                      (6) 

𝑑𝒉

𝑑𝑡
=

𝒉𝑛+1 − �̃�𝑛

∆𝑡
                     (7) 

 

We use quadratic interpolation to calculate �̃�  and �̃�  at departure point �̃�𝑖
𝑛  by 

considering neighbouring heights and velocities, since �̃�𝑖
𝑛 may not lie exactly on a 

grid point. By substituting equations (6) and (7) into equations (3) and (4) we 

obtain equations (8) and (9). 

 

𝒖𝑛+1 − �̃�𝑛

∆𝑡
+ 𝑔

𝛿𝒉𝑛+1

𝛿𝑥
 = 0                                      (8) 

𝒉𝑛+1 − �̃�𝑛

∆𝑡
− 𝒖𝑛+1

𝛿𝑏

𝛿𝑥
+ 𝒅𝑛

𝛿𝒖𝑛+1

𝛿𝑥
= 0                (9) 

 

We can solve equation (9) by eliminating the terms 𝒖𝑛+1 and 
𝛿𝒖𝑛+1

𝛿𝑥
. Rearranging 

(8) we can get 𝒖𝑛+1 as shown in equation (10). By taking the derivative of equation 

(10) with respect to 𝑥 we can get 
𝛿𝒖𝑛+1

𝛿𝑥
 as shown in equation (11). 

 

𝒖𝑛+1 = �̃�𝑛 − ∆𝑡𝑔
𝛿𝒉𝑛+1

𝛿𝑥
                                          (10) 

𝛿𝒖𝑛+1

𝛿𝑥
=

𝛿�̃�𝑛

𝛿𝑥
− ∆𝑡𝑔

𝛿2𝒉𝑛+1

𝛿𝑥2
                                   (11) 
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By substituting equations (10) and (11) into equation (9) we arrive at the following 

differential equation without any unknown velocity terms. 

 

𝒉𝑛+1 + ∆𝑡2𝑔
𝛿𝑏

𝛿𝑥

𝛿𝒉𝑛+1

𝛿𝑥
 − ∆𝑡2𝑔𝒅𝑛

𝛿2𝒉𝑛+1

𝛿𝑥2
= �̃�𝑛 + ∆𝑡�̃�𝑛

𝛿𝑏

𝛿𝑥
− ∆𝑡 𝒅𝑛

𝛿�̃�𝑛

𝛿𝑥
           (12) 

 

Using the central difference formula we can spatially discretised equation (12) so 

that the one-dimensional shallow-water equations are reduced to the following 

differential equation which we can then solve: 

 

𝒉𝑖
𝑛+1 + ∆𝑡2𝑔 (

𝑏𝑖+1 − 𝑏𝑖−1

2∆𝑥
) (

𝒉𝑖+1
𝑛+1 − 𝒉𝑖−1

𝑛+1

2∆𝑥
) − ∆𝑡2𝑔𝑑𝑖

𝑛 (
𝒉𝑖−1

𝑛+1 − 2𝒉𝑖
𝑛+1 − 𝒉𝑖+1

𝑛+1

∆𝑥2
)

= �̃�𝑖
𝑛 + ∆𝑡�̃�𝑖

𝑛 (
𝑏𝑖+1 − 𝑏𝑖−1

2∆𝑥
) − ∆𝑡𝒅𝑖

𝑛 (
�̃�𝑖+1 − �̃�𝑖−1

2∆𝑥
)                         (13) 

 

Where 𝒉𝑛+1 are the unknown heights of the water along the one-dimensional line 

of water which we are trying to calculate at a time of 𝑡𝑛+1. 𝑔 denotes the constant 

gravitational force acting upon the simulation and 𝑏 denotes the height of the 

ground, which remains constant throughout the simulation for every point 𝑖. 𝒅𝑛 is 

the depth of the water at a time of 𝑡𝑛, which is a simplification for 𝒅𝑛 =  𝒉𝑛 − 𝑏. 

Equation (13) can then be solved using the conjugate gradient method (Hestenes 

and Stiefel 1952) as it is effective for solving large and sparse systems efficiently. 

For every time step, the heights 𝒉𝑛+1  at time 𝑡𝑛+1  are calculated. Using these 

heights the velocities 𝒖𝑛+1 at time 𝑡𝑛+1 can then be calculated from equation (10). 

To keep equation (13) stable the following time step ∆𝑡 = 1/60𝑠  and step size 

∆𝑥 = 0.1𝑚 were used. 
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2.3 The Sea Bed 

As mentioned earlier, the simulation incorporates a sloped sea bed (see Figure 7). 

This is important as the presence of a sloping sea bed naturally causes waves to 

increase in height as they approach the shore, where the depth of the water 

approaches zero (Surfing Waves 2011?). 

 

 

 

 

 

 

2.4 Boundary Conditions 

We have two boundary conditions to consider within the simulation. The firs is an 

open boundary out in the ocean at position 𝑥0, where waves will enter into the 

simulation. The second is a free moving boundary which represents the shoreline 

at position 𝑥𝑠 (see Figure 8). Since the water is free to flow over the sea bed there 

should be a naturally occurring movement of this boundary as the shoreline 

advances and recedes due to the influence of incoming waves. The height and 

velocity values must be carefully considered at these two boundaries so that the 

simulation remains stable. 

 

 

 

 

d 

bh

Figure 7: A gradually increasing sea bed 
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2.4.1 Open Ocean Boundary 

When calculating numerical derivatives using the central difference formula at 

positions 𝑥𝑖, values are required at 𝑥𝑖−1 and 𝑥𝑖+1. When considering the boundary 

out in the ocean at position 𝑥0 we realise no velocity or height values exists at 

position 𝑥−1 so we must estimate these values ourselves. Since water is generally 

flowing into the simulation at this boundary it is safe to assume the particle outside 

the boundary at position 𝑥−1 has the same departure velocity as the particle on the 

boundary at position 𝑥0 so that �̃�−1 =  �̃�0. It is also safe to assume that the height 

of the water outside the boundary at position 𝑥−1 and time 𝑡𝑛+1 will be similar to 

the height of the water on the boundary at position 𝑥0 and time 𝑡𝑛 so we can make 

them equal 𝒉−1
𝑛+1 = 𝒉0

𝑛. We can also say that the ground level at position 𝑥−1 is 

equal to the ground level at position 𝑥0 , 𝑏−1 = 𝑏0 , since the ground level is 

constant throughout the simulation. 

 

2.4.2 Moving Shoreline Boundary 

The second boundary in the simulation is the shoreline at position 𝑥𝑠 and is not a 

fixed boundary. This boundary is not treated the same as the boundary at 𝑥0 since 

velocity and height values beyond the boundary do exist. The 2D height field does 

not just cover the region from the boundary at 𝑥0 to the shoreline at 𝑥𝑠, it stretches 

Open Ocean Boundary at 𝑥0 Moving Shoreline Boundary at 𝑥𝑠 

Figure 8: Side view of the simulation with the two boundaries 
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beyond 𝑥𝑠 and up the shore to allow for the movement of the shoreline. The depth 

of the water at positions greater than 𝑥𝑠 is very small and therefore negligible since 

no water is present at these positions. To reduce numerical error, the velocity at 

positions greater than 𝑥𝑠 is forcibly set to zero. All positions on the height field 

greater than 𝑥𝑠  are naturally hidden beneath the shore (see Figure 8) since the 

depth of the water is very small and the mesh of the sea bed is raised by a small 

value to account for this. 

 

2.5 Interactions with the Shoreline 

For simplicity the whole range of the height field is not considered whilst solving 

the shallow-water equations to obtain updated height and velocity values since the 

region above the shoreline contains no water. Only the region from 𝑥0 to 𝑥𝑠  is 

considered. At a time 𝑡𝑛 the water depth at position 𝑥𝑠−1 will be greater than zero 

and at position 𝑥𝑠  the water depth will be zero (see Figure 9). The height and 

velocity at position 𝑥𝑠+1 will both be zero as there is no water present to the right 

hand side of the shoreline. Depending on the rest of the simulation, at time 𝑡𝑛+1 

the height of the water at position 𝑥𝑠 may rise to become greater than zero so that 

the shoreline boundary advances from position 𝑥𝑠 to 𝑥𝑠+1. The same also applies 

for a receding shoreline, where the height of the water at time 𝑡𝑛+1 and position 

𝑥𝑠−1 may drop to zero so that the shoreline boundary recedes from position 𝑥𝑠 to 

𝑥𝑠−1.  

 

 

 

 

 

𝑥𝑠−1 𝑥𝑠 𝑥𝑠+1 

Figure 9: Shoreline boundary at 𝒙𝒔 
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Although the depth of the water at position 𝑥𝑠  is zero this does not mean the 

velocity at this position should be zero. From Figure 9 it can be seen that water just 

touches position 𝑥𝑠 . At the next time step a particle at position 𝑥𝑠  will be 

considered and its departure point �̃�𝑠
𝑛 will need to be calculated. This requires the 

particle to have a velocity unless the water is at complete rest, in which case the 

shoreline will not move. 

The shoreline is a special case boundary where continual wetting and drying 

occurs either side of the boundary as the water advances and recedes over the sea 

bed. This transition should be smooth so that it is realistic. However the 

movement of the shoreline can be prone to sticking and is often jittery. To solve 

this, the velocity of the water at the boundary 𝑥𝑠 is adjusted, using values from 

Khan and Lai (2014), to keep the movement of the shoreline smooth. When 

𝒉𝑠−1
𝑛 > 𝒉𝑠

𝑛, the height of the water at 𝑥𝑠−1 is greater than the height of the water 

at 𝑥𝑠 then the following amount is added to the velocity at 𝑥𝑠 to keep the shoreline 

moving smoothly: 

 

𝒖𝑠
𝑛+= 2√𝑔(𝒉𝑠−1

𝑛 − 𝒉𝑠
𝑛) 

 

 

2.6 Propagating Waves 

In order to create breaking waves in a shoreline water simulation, waves must first 

be propagated into the simulation. This is done by periodically applying harmonic 

motion to adjust the height of the water at the open boundary at 𝑥0, which sends 

sine waves into the simulation (see Figure 10). These waves gradually steepen as 

they approach the shore. The height of the waves propagated into the simulation 
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can be adjusted along with the frequency of their propagation. Different 

frequencies and different heights of waves have different effects on the simulation 

as a whole and determine if/when a wave will become steep enough to break. 

 

 

 

 

 

 

 

2.7 Locating and Tracking Waves with Potential to Break 

Whether waves within the simulation will break or not is determined by the 

steepness of their front. All of the waves in the simulation are located by sweeping 

across the height field from position 𝑥𝑠 to 𝑥0,  finding positions with sufficiently 

steep gradients which then become the fronts of waves that have the potential to 

break (see Figure 11). 

 

 

 

 

 

 

Figure 10: Wave propagation from the open boundary 

Wave Peak (highest point) 

Wave Front (steepest gradient) 

Direction of travel 

Figure 11: A wave with the potential to break 
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The peak position of each wave is then located by finding the highest point behind 

the wave front. Since all waves travel in the same direction, towards the shore, the 

peak of the wave will always be behind. Since we know the direction a wave is 

travelling, we can use advection to transport this location forward to more quickly 

determine the updated position of the wave front for every time step of the 

simulation. The updated wave front position is then used to update the position of 

the peak of the wave. 

 

2.8 Creating and Animating Breaking Waves 

Since the shallow-water equations do not account for three-dimensional flows 

they cannot model features such as breaking waves which overturn. We must 

account for this and add the functionality of breaking waves on top of the 

simulation. Having previously detected waves with the potential to break we can 

periodically project particles forward from the peak of the wave to form a mesh of 

water to represent the overturning wave (see Figures 12 and 13). 

 

 

 

 

 

 

 

Particles are projected from the peak of the wave with a forward velocity directly 

proportional to the steepness of the wave front. Particles are given an initial 

vertical velocity directly proportional to the difference in height between the 

Figure 13: Mesh formed by connecting 

projected particles 
Figure 12: Particles spawn from the peak of 

waves 
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water at position 𝑥𝑝 and 𝑥𝑝−1, where 𝑥𝑝 is the position at the peak of the wave. 

This means that a wave whose peak is flatter will project particles with a smaller 

vertical velocity. The position of these particles is relative to the peaks from which 

they were spawned so that they move along with the wave. The velocities of 

particles are unaffected by the shallow-water equations and are only affected by 

the force of gravity. 

As seen in Figure 13 a mesh of water is created along the wave to emulate the 

overturning nature of the wave. This mesh of water is created by connecting the 

projected particles, starting from the peak of the wave, and creating vertices for 

the mesh at these points. As the particles move through space the vertices of the 

mesh are appropriately updated so the mesh is constantly changing. If a wave 

slows down and its peak starts to recede then the wave has lost its potential to 

break so will not project any more particles. This leads to the current mesh of 

particles falling and crashing back into the height field. 

 

2.9 Merging Breaking Waves into the Surface of the Water 

Once the particle at the end of the mesh collides with the surface of the water (see 

Figure 14) there is the problem of deciding how the overturning wave should best 

flow back into the surface of the water. The mesh should blend seamlessly into the 

height field to ensure the breaking wave and the surface of the water appear as 

one. This has been achieved by raising all of the points on the height field which 

are under the mesh up to the height of the mesh and then removing the mesh (see 

Figure 15). The velocity of the water at these points is then set to the value of half 

of the velocity of the water at the peak of the wave. This keeps the water flowing 

smoothly towards the shore and also looks natural. 
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Raising the height field does introduce more water into the simulation, however it 

will not lead to an increase in the volume of water in the simulation over long 

periods of time. The height of the water is maintained at a constant level (1 metre) 

at the open boundary so any excess water will naturally leave the simulation. The 

temporary increase in water is not noticeable, especially since there is a constant 

flow of water which causes the shoreline to continually advance and recede. 

 

2.10 Making the Simulation Photorealistic 

As explained earlier, enhancing the photorealism of the simulation is one of the 

toughest challenges dues to the complexity of water and its behaviour, especially 

when dealing with breaking waves. In a simple and calm ocean water simulation, 

photorealism is not too difficult to achieve. However a shoreline water simulation 

with waves that approach the shore and break proves a tougher challenge when 

striving for photorealism. This is due to the added complexity that breaking waves 

bring to the simulation, where splashes and foaming of the water now need to be 

considered when looking to make the simulation photorealistic. 

 

 

Figure 14: The furthest particle in the mesh 

hitting the surface of the water 
Figure 15: Height field raised to join the 

particles in the mesh 
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2.10.1 Colour and Surface Reflections 

To produce photorealistic water it must reflect the surrounding environment, and 

it should also be coloured correctly. The colour given to the water comes from a 

blend of the reflected sky and a defined water colour. This blend is created from 

the Fresnel effect which states that the amount of reflection seen in a surface is 

dependent on the angle the surface is viewed at (Bim 2001). Reflecting the sky also 

emulates the effect of specular lighting where the sun is reflected, causing the 

water to glisten in the sun light. 

To produce accurate reflections the three-component normal vectors to the surface 

at every vertex on the height field must be calculated. Calculating the normal 

vectors for every vertex in three-dimensional space at every frame can become 

very computationally expensive. However, due to the nature of the simulation, the 

normal vectors at each vertex will be constant along grid lines parallel to the 

shoreline as the heights are equal along these grid lines. This significantly reduces 

the number of calculations that would have been required if the simulation used 

the more complex two-dimensional shallow-water equations. 

To add detail to the surface of the water a technique called ‘Normal Mapping’ has 

been used. This technique uses the red, green and blue values from a texture (see 

Figure 16) to manipulate the x, y and z components of normal vectors, faking the 

appearance of bumps on the surface of the water. 

 

 

Figure 16: Normal map which adds detail to the water's surface 
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Figures 17 and 18 demonstrate the difference that normal mapping makes to the 

surface of the water in helping to make the water more realistic. 

 

 

 

 

 

 

 

2.10.2 Animated Ripples 

With surface detail added to the water through normal mapping the detail appears 

very static, which does not look convincing when waves pass through the height 

field. This could be improved by translating the normal map texture over time, but 

this would not be convincing. To solve the problem of a static normal map, 

animated ripples have been used to manipulate the texture coordinates of the 

normal map to give the appearance of unique ripples throughout the simulation 

(see Figure 19). 

 

 

 

 

 

 

Figure 17: Flat water surface Figure 18: Normal mapped water surface 

Figure 19: Ripples animated throughout the water's surface 
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To create the impression of unique animated ripples across the surface of the water 

a smaller repeating height field of size 40x40 has been created. Points within the 

height field are initially set to a height of zero. Every frame, points are then 

randomly chosen to be offset by a small value. By utilising and solving the two-

dimensional dampened wave equation (see Appendix B) these offset points 

disperse through the height field creating ripples. Boundary values are not 

required for solving the dampened wave equation since the 40x40 height field 

loops round on itself. 

Directly applying and repeating these ripples across the surface of the water would 

give the impression rain was falling onto the water. Instead of directly applying 

the ripples to the surface of the water, the normal vectors of the ripples are used to 

offset the texture coordinates of the normal map. This causes an animated 

disturbance within the normal map to successfully create a realistic ripple effect 

that might be witnessed at the shore. The ripples are also used to slightly modify 

the heights on the height field and the heights of the vertices which make up a 

breaking waves mesh. This is so that the shoreline and the edge of breaking waves 

do not appear completely straight, which would look unnatural. 

 

2.10.3 Shoreline Foam 

When a shoreline advances and recedes due to incoming waves, foam is produced 

along the shoreline. To create a foaming effect, each point in the height field along 

the line perpendicular to the shoreline stores a value based on the amount of foam 

present at that point. This value is kept between zero and one, where zero equates 

to there being no foam. 
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When a wave breaks and crashes back into the surface of the water, foam is 

applied to the points surrounding where the wave touched the surface by setting 

the values of the amount of foam to one. A layer of gradually fading foam is spread 

across the shoreline by using the code from Figure 20. 

 

 

 

 

 

 

 

Foam is dispersed across the water with the following function: 

 

𝑓𝑖
𝑛+1 =

5𝑓𝑖
𝑛 + 3𝑓𝑖−1

𝑛 + 2𝑓𝑖+1
𝑛

10
 

 

Where 𝑓𝑖  is the amount of foam at a point 𝑖  at a time step 𝑛 . This function 

disperses the foam with a bias towards the left, meaning that foam will disperse 

more quickly out in the direction away from the shore and will linger for longer 

towards the shore. With an advancing shoreline, more foam will be produced 

since it takes longer to disperse from where the shoreline previously existed (see 

Figure 21). With a receding shoreline, foam is brought back with the shoreline (see 

Figure 22). This is all due to the bias in the above equation. 

 

for (int position = 0; position < foam_width; ++position) 

{ 

  if (foam[shoreline - position] < (foam_width - position) / foam_width) 

  { 

    foam[shoreline - position] = (foam_width - position) / foam_width; 

  } 

} 

 

Figure 20: Code which applies foam along the shoreline 
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Figure 21: Foam produced by an advancing shoreline 

Figure 22: Foam brought back by a receding shoreline 

 

 

 

 

 

 

 

 

 

 

 

 

A texture (see Figure 23) is used to add detail to the foam to aid in its realism. In 

the same way ripples were applied to the normal texture they are also applied to 

the foam texture to give the impression that the foam is moving and is affected by 

movement on the surface of the water. 

  

 

 

 

Figure 23: Foam texture used to add detail to the foam 
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Figure 25: Improved foam with added detail 

The detail is not applied across all of the foam but is tethered towards the edges of 

the foam. By comparing Figures 24 and 25 it is shown that adding detail to the 

foam makes a substantial improvement in its appearance. 

 

 

Figure 24: Plain white foam 
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Figure 26: Foam applied to the mesh of a breaking wave 

Generally when a wave breaks it also foams. To help a breaking wave stand out 

and to stop it from visually blending in with the rest of the water, foam is applied 

to the mesh which represents the overturning water (see Figure 26). 

 

 

 

  

 

 

 

 

 

2.10.4 Splash Particle Effects 

The final visual features of the water left to consider are splashes and spray. Semi-

transparent particles have been used to emulate these visual effects. When a wave 

crashes back into the surface of the water, particles are spawned across the wave 

where the mesh of the wave touches the water (see Figure 27). These particles are 

given a forward velocity proportional to the velocity of the wave and an upward 

velocity proportional to the downward velocity of the particle which makes up the 

end of the wave mesh. 
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Figure 27: Particles spawned where a wave crashed 

Figure 28: Particles spawned along a wave mesh 

 

 

 

 

 

 

 

Throughout the process of a wave breaking, from start to end, particles are 

spawned along the wave mesh (see Figure 28). This livens up the breaking wave, 

helping to make it more realistic and better resemble a breaking wave. 
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2.10.5 Wetting the Sand 

When a shoreline advances and water flows over sand the sand gets wet and 

retains the water when the shoreline recedes. Although the sand is not part of the 

water it has the potential to affect the overall appearance of the simulation. Since 

the moving shoreline is a prominent feature of the simulation, it is important to 

ensure the sand reflects this. The sand is given the appearance of wetness by 

darkening the output value in the pixel shader. Over time the sand dries and will 

return to maximum wetness when it is next covered by the shoreline. 

 

 

 

Figure 29: Sand is made wet by the moving shoreline 
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Chapter 3. Results and Discussion 

 

 

 

This chapter will now evaluate the simulation with regards to its performance and 

determine how visually realistic it is in order to address the research question: 

“How realistic can a simulation of shoreline water be in a real-time application 

which also incorporates breaking waves?” 

 

3.1 Performance Analysis 

The application’s performance was analysed using high resolution profiling code 

from Bremner (2010). This allowed specific components of the simulation to be 

profiled to determine where the simulation spends most of its time. All testing was 

carried out using a release mode build of the application on a laptop with the 

following specifications: 

 

Table 1: Specifications of the laptop used for testing 

CPU Intel Core i5-3230M (3 MB Cache, 2.60 GHz) 

RAM 6 GB 

GPU Intel HD Graphics 4000 

OS Microsoft Windows 10, 64-bit 
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The performance of the simulation is important if it is to be used within video 

games. As explained earlier the simulation should “be at least around 3–20 times 

faster” (Kellomäki 2012, p.11) than real-time due to the other systems in video 

games which require processing power. 

The simulation was profiled with a height field of dimensions 250x200, where 200 

is the length of the height field along the axis parallel to the shoreline, and 250 is 

the length of the height field along the axis perpendicular to the shoreline. These 

values were appropriately chosen so that the height field extends into the distance, 

imitating a scene within a video game. The results shown in Table 2 were 

produced by running the simulation over a period of twenty seconds. The ‘number 

of executions’ column in Table 2 shows how many times each component of the 

simulation was executed over the test period. Some components of the simulation 

will always be executed every frame, whereas wave meshes and splash particles 

will not always exist so are not updated. 

 

Table 2: Results from profiling components of the simulation 

Component of the simulation Number of executions 

over 1245 frames 

Time in milliseconds 

per execution 

Complete Simulation 1245 1.683 

Update height field and normals 1245 0.987 

Solving shallow-water equations 1245 0.559 

Updating wave meshes 429 0.044 

Update ripples and normals 1245 0.025 

Update the sands wetness 1245 0.012 

Update the splash particles 521 0.009 
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As shown in Table 2, the whole simulation takes on average just 1.683 milliseconds 

to execute. In the context of a gaming application we can consider real-time to be 

a speed of 60fps, where one frame lasts for 16.667 milliseconds. With an execution 

time of 1.683 milliseconds, the simulation is processed 9.9x faster than real-time, 

using only 10% of the processing power available in a single frame. 

 

3.1.1 Frame Rate 

Having a fast execution time does not guarantee that the rendering of the 

simulation will be fast. The uncapped frame rate of the application was tested with 

the same 250x200 sized height field over a period of twenty seconds. The results 

are presented in Table 3 below, showing the difference between a windowed and 

full screen version of the application. Included in the application is an animated 

sky which compliments the simulation, however this will have a negative effect on 

the frame rate. 

 

Table 3: Frame rate tested in windowed and full screen modes 

Mode Frames per second Milliseconds per frame 

Windowed (800x600) 475.737 2.102 

Full Screen (1600x900) 148.082 6.753 

 

 

3.1.2 Effect of the Height Field’s Size on Simulation Time  

From Table 2 it is found that the most computationally expensive components of 

the simulation are numerically solving the 1D shallow-water equations and 

updating the vertices of the height field (including the normals). These 

computational times are directly affected by the size of the height field (see Figures 

30 and 31). 
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The effect that the length of the shoreline has on the performance of the 

simulation can be seen in Figure 30. Since the shallow-water equations are only 

solved along the axis perpendicular to the shoreline, extending the length of the 

shoreline has no effect on the time taken to solve the shallow-water equations. By 

increasing the length of the shoreline, the number of vertices within the height 

field is also increased, thereby increasing the overall time taken to update the 

height field. 

 

 

Figure 30: Effect of shoreline length on simulation time 

 

 

Extending the height field in the direction perpendicular to the shoreline has a 

greater impact on the simulation time (see Figure 31). This is due to the increased 

number of points to solve the shallow-water equations over.  
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Figure 31: Effect of ocean length on simulation time 

 

 

By comparing the results from Figures 30 and 31 (see Figure 32) it is observed that, 

for height fields of equal areas, the simulation will run faster where the length of 

the height field along the shoreline is longer. 

 

 

 

Figure 32: Comparison of results from Figures 30 and 31 
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3.1.3 Stability of the Simulation 

In order to best demonstrate the simulation, the user has the ability to modify the 

heights of the propagated waves, ranging from a height of 0.1 to 0.5 metres. The 

simulation was left to run for a period of four hours at both the minimum and 

maximum wave heights. On both occasions the simulation remained stable, with 

no drop in water level. 

 

3.2 Visual Analysis 

With regards to the visual realism of the simulation, it is understood that the 

simulation should be believable and photorealistic if it is to be used within a 

modern video game. 

 

3.2.1 Believability of the Simulation 

Since the simulation uses the 1D shallow water equations, waves can only be 

produced along one axis. This restricts the topography of the sea bed and the land 

as it must remain consistent along the length of the shoreline. This of course limits 

the believability any shoreline water simulation can achieve, but the 

computational expense of using the 2D shallow-water equations would be too 

great for a real-time simulation. 

Figure 33 depicts the progression of a wave breaking as it approaches the shoreline. 

Here the shoreline is seen to be receding as the wave approaches, accurately 

replicating the motion of water at a shoreline. The method used to produce the 

wave mesh, combined with the particle effects, successfully creates the impression 

of a breaking wave that would be seen at a beach. Although the wave breaks 

uniformly along its length, the simulation can be considered to be believable. 
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Figure 33: Progression of a breaking wave 

  

  

   

  

 

 

 

 

 

 

 

3.2.2 Photorealism of the Simulation 

All of the steps taken in an attempt to achieve photorealism within the simulation 

are necessary, with each improving its visual appearance. The use of particles to 

represent the breaking of waves significantly improves their photorealism as 

particles successfully distort the unnatural straightness of the waves. Particles also 

highlight the turbulence of crashing waves, with water splashing up from the 

surface upon their impact. Although particles visually add to the simulation they 

do not blend into the surface of the water as would be expected. They often appear 

detached and separate from the water (see Figure 33). 

As seen in Figure 33 the foam produced at the shoreline successfully conveys its 

movement caused by the incoming waves. The methods used to create and render 

the foam provides detail and movement which bears a resemblance to foam 

observed at a beach (see Figure 34). 
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Figure 35: (L) Photo of shoreline water (R) Screenshot of simulated water 

Figure 34: (L) Photo of shoreline foam (R) Screenshot of simulated foam 

 

 

 

 

 

 

The surface detail on the water that was created from animated ripples and normal 

mapping, produces a surface similar to that seen in real life examples of the ocean 

(see Figures 35 and 36).  

 

 

  

 

 

 

 

 

By reflecting the sky, including the clouds and the sun, the surface of the water is 

made photorealistic as the sunlight glistens across the water. This photorealism is 

maintained as the changing colour of the sky is reflected in the water (see Figure 

36 and 37). 
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Figure 36: The surface of the water reflecting the sun and the sky 

Figure 37: The colour of the water changing as the sky changes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the results discussed above, the simulation can be considered somewhat 

photorealistic as there are areas where improvements could yet be made. 

Improvements to existing visual features can be incorporated with relative ease as 

the application provides a good foundation to build upon. When considering the 

photorealism of the simulation alongside its believability we can say that, overall 

the simulation is realistic and produces visually satisfying results.  
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Chapter 4. Conclusions and Future Work 

 

 

 

The project was undertaken with the aim to incorporate breaking waves into a 

real-time simulation of shoreline water, suitable for use in video games. After 

investigating the methods available for simulating shallow water and breaking 

waves, a simulation was then developed. The simulation produced was then 

evaluated to answer to the project’s research question: 

“How realistic can a simulation of shoreline water be in a real-time application 

which also incorporates breaking waves?” 

Although not perfect, the simulation produced has been shown to be realistic 

whilst running faster than real-time. It represents shoreline water with breaking 

waves in a believable manner and also displays a good level of photorealism, 

accurately resembling the visual features of shoreline water. The most apparent 

problem with the simulation is the uniformity of breaking waves. Further 

investigation could look to resolve this and further improve the believability of the 

simulation, as it would more accurately reflect the behaviour of shoreline water. 

To answer the research question, a simulation of shoreline water which also 

incorporates breaking waves has the potential to be fairly realistic at real-time. 

Over the course of the project, the four objectives outlined in the introduction 

have been met as well as achieving the two aims of the project and successfully 

answering the research question. With only a few minor improvements the 

current simulation could be made more realistic, making it suitable for use within 

a video game environment. 
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4.1 Future Work 

Even though breaking waves have successfully been incorporated into a simulation 

of shoreline water, there is no variation within the waves other than their height. 

Waves seldom break along their whole length at once. The breaking of a wave 

usually takes place at single points along the wave, then spread out across the 

length of the wave. Given more time the generation of wave meshes and the 

spawning of particles could be adapted to make waves break in a more believable 

manner. 

The simulation could be expanded to allow for more complex shoreline 

topographies, since the simulation is currently restricted to shorelines with a 

consistent topography along the length of the shoreline. This would require the 

use of the 2D shallow-water equations, greatly increasing the computational 

expense of the simulation. To reduce an incurred computational expense, the area 

manipulated by the 2D shallow-water equations could be limited to a smaller area 

close to the shoreline. The boundary values could then be manipulated from a 

second height field in the ocean, producing waves through methods such as the 

Sum of Sines Approximation (Finch 2007). 

Visually there could always be room for improvement within the simulation. One 

visual aspect of shorelines which was not considered was the reflectivity of wet 

sand. This is only noticeable during a rising or setting sun (see Figure 35) and 

would be trivial to incorporate into the simulation. 
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APPENDIX A: Euler’s Equations 

 

 

 

The following two equations are known as the Euler equations (Bridson and 

Müller-Fischer 2007, p. 9). They are a simplification of the Navier-Stokes 

equations and model an ideal fluid which has no viscosity with a constant density: 

 

𝛿𝒖

𝛿𝑡
+ 𝒖 ∙ ∇𝒖 = −∇

𝑝

𝜌
+ 𝒈          (1) 

 

∇ ∙ 𝐮 = 0                                       (2)  

 

Where 𝒖 is the velocity, 𝑝 is the pressure, 𝜌 is the density of the fluid and 𝒈 is the 

gravitational force. The first equation, known as the momentum equation, is 

essentially Newton’s 2nd Law 𝐹 = 𝑚𝑎 . The second equation, known as the 

incompressibility condition, states that the volume of the fluid remains constant 

throughout the simulation (Bridson and Müller-Fischer 2007, p. 7). 
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APPENDIX B: Solving the 2D Dampened Wave Equation 

 

 

 

The following equation is the two-dimensional wave equation: 

 

𝛿2𝒉

𝛿𝑡2
= 𝐶2 (

𝛿2𝒉

𝛿𝑥2
+

𝛿2𝒉

𝛿𝑦2
)                (1) 

 

Where 𝒉 is the height as a function of 𝑥, 𝑦 and 𝑡. 𝐶 is defined as a constant wave 

speed. This equation is a second order linear partial differential equation which 

can be solved by using the central difference formula and taking ∆𝑥 = ∆𝑦 to give: 

 

𝒉𝑖𝑗
𝑛+1 − 2𝒉𝑖𝑗

𝑛 + 𝒉𝑖𝑗
𝑛−1

∆𝑡2
= 𝐶2

(𝒉𝑖−1,𝑗
𝑛 + 𝒉𝑖+1,𝑗

𝑛 + 𝒉𝑖,𝑗+1
𝑛 + 𝒉𝑖,𝑗−1

𝑛 − 4𝒉𝑖𝑗
𝑛 )

∆𝑥2
                 (2) 

 

When rearranged for 𝒉𝑖𝑗
𝑛+1 this becomes: 

 

𝒉𝑖𝑗
𝑛+1 = 2𝒉𝑖𝑗

𝑛 − 𝒉𝑖𝑗
𝑛−1 + 𝐾2(𝒉𝑖−1,𝑗

𝑛 + 𝒉𝑖+1,𝑗
𝑛 + 𝒉𝑖,𝑗+1

𝑛 + 𝒉𝑖,𝑗−1
𝑛 − 4𝒉𝑖𝑗

𝑛 )           (3) 
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Where 

𝐾 =
𝐶∆𝑡

∆𝑥
 

 

With a dampening term the two-dimensional wave equation is:  

 

𝛿2𝒉

𝛿𝑡2
= 𝐶2 (

𝛿2𝒉

𝛿𝑥2
+

𝛿2𝒉

𝛿𝑦2
) + 𝐵

𝛿𝒉

𝛿𝑡
                (4) 

 

Where 𝐵 is a constant for the amount of dampening applied. Using the central 

difference formula the dampening term becomes: 

 

𝐵
𝛿𝒉

𝛿𝑡
= 𝐵

𝒉𝑖𝑗
𝑛+1 − 𝒉𝑖𝑗

𝑛−1

2∆𝑡
                                  (5) 

 

By adding the dampening term (5) to the wave equation (2) and rearranging for 

𝒉𝑖𝑗
𝑛+1 we arrive at equation (6): 

 

𝒉𝑖𝑗
𝑛+1

=
2𝒉𝑖𝑗

𝑛 − 𝒉𝑖𝑗
𝑛−1 + 𝐾2(𝒉𝑖−1,𝑗

𝑛 + 𝒉𝑖+1,𝑗
𝑛 + 𝒉𝑖,𝑗+1

𝑛 + 𝒉𝑖,𝑗−1
𝑛 − 4𝒉𝑖𝑗

𝑛 ) +
𝐵∆𝑡𝒉𝑖

𝑛−1

2

1 +
𝐵∆t

2

           (6) 
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For equation (6) to remain stable the following condition should be satisfied: 

 

0 < ∆𝑡 <
∆𝑥

𝐶√2
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